首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    OpenCV图像藏密--将图像隐藏到另一张图像中

    image1, front_mask, tFront_image); bitwise_and(image2, hidden_mask, tHidden_image); //处理每个颜色通道,将左侧...(2) src2 :第二输入图像或Scalar 颜色值。 (3) dst : 输出图像,与输入图像同大小与类型。 (4) mask:可有可无的掩码。...(2) src2 :第二输入图像或Scalar 颜色值。 (3) dst : 输出图像,与输入图像同大小与类型。 (4) mask:可有可无的掩码。 执行结果 (a)原图: ?...例如,使用同一台相机或手机拍摄的图像大小一般是相同的,除了手机横拍或直拍的差异。不过相信读者已知道要被隐藏得图像其长宽一定要较小,因为在两层的for循环处理中,超过隐藏文件的长或宽就不进行处理了。...(b)解密出的图像: ? 也许你认为图片有失真,其实隐藏图像并不一定是要传送真实的图片,而只是为了传递图像中的信息。

    2.2K20

    ☆打卡算法☆LeetCode 68、文本左右对齐 算法解析

    一、题目 1、算法题目 “给定单词数组和一个长度maxWidth,重新排版单词,使其成为恰好有maxWWidth个字符,且左右对齐的文本。” 题目链接: 来源:力扣(LeetCode) 链接:68....文本左右对齐 - 力扣(LeetCode) (leetcode-cn.com) 2、题目描述 给定一个单词数组和一个长度 maxWidth,重新排版单词,使其成为每行恰好有 maxWidth 个字符,且左右两端对齐的文本...对于填充空格的情况可以分为三种: 最后一行:单词左对齐,单词之间应只有一个空格,在行末补充空格 不是最后一行且只有一个单词:该单词左对齐,在行末补充空格 不是最后一行且不只一个单词:将空格均匀的分配在单词之间

    91040

    将图像自动文本化,图像描述质量更高、更准确了

    在这其中,图像 - 文本数据集发挥着至关重要的作用,在图像理解、文本生成和图像检索等多个领域发挥着关键作用。...来自香港科技大学、武汉大学、浙江大学、UIUC的研究者联合提出了一种创新的自动化框架 ——Image-Textualization(IT),该框架通过整合多模态大语言模型(MLLMs)和多种视觉专家模型的协作,将图片信息进行文本化...,最后利用拥有强大的推理能力的纯文本大语言模型将这些文本化的信息转化为高质量的图像描述。...对此,我们首先利用分割模型将这些物体的 mask 给提取出来,再将原本的图片转化为深度图,通过计算深度图中特定物体 mask 对应的深度分数来将深度信息由文本体现出来。...D2I-Bench(描述到图像基准):利用文生图模型将生成的描述转化为图片,和原图进行相似度的对比,这里我们选取了 CLIP-score 和 DINO-score 进行评估,都能达到更高的分数。

    36710

    将图像转换位mnist数据格式

    为了完成上述想法,我能想到的有两个方法,其中第一个是将普通图片数据转换成mnist数据。mnist的数据格式非常简单,如下图所示: 两幅图分别表示了图形数据和标签数据。...如果是图像数据,那么magic number后,除了4个字节的数据数量以外,还有分别占4字节的行列数据,最后的就是图像数据。结构非常简单,但是有两点值得注意: 数据使用big endian组织的。...图像数据中,255表示前景,也就是黑色,0表示背景,也就是白色,这和我们平时看到的RGB是不同的。 知道了数据格式,接下来的事情是用程序将图像转换到mnist了。这里还是用python对数据做转化。...以上是对图像数据的转换,标签数据的转换代码和以上代码基本一样,所以这里不再赘述。...于是就有了第二种方法,这种方法将借助浏览器,js以及web server等工具将手写的数字实时的传给后台的模型进行识别,然后把结果回复给用户。不过这个方法就要等待下一篇文章来描述了。

    1.4K100

    AI都可以将文字轻松转成图像

    为了生成更符合物理世界规律的图像,生成过程中所用到素材必须取自真实世界的图像。...这些向量被传入到Object Layout Network[2]中用于预测对象的bounding boxes和Segmentation masks,将向量的边界框和掩膜结合就能得到对象的布局,将所有对象布局结合就能形成...然后用一个级联细化网络Cascaded Refinement Network(CRN)[3]将布局转换为生成图像。...二、一对判别模型Dimg和Dobj 图像判别器Dimg确保生成的图像的整体外观是真实的,它将规则间隔,重叠的图像块集合分类为真实或伪造。...除了将每个对象分类为真实还是假的,Dobj还确保每个对象都可以使用预测对象类别的辅助分类器来识别; Dobj和f都尝试最大化Dobj正确分类对象的概率。 训练的时候有6个损失: ? ?

    67620
    领券