首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

ggpmisc--给你的曲线添加回归方程

导语 GUIDE ╲ 基于模型拟合的常见绘图注释有模型方程、显着性检验和各种拟合优度指标。...哪些注释最有用取决于是将 x 和 y 都映射到连续变量,还是将 y 映射到连续变量,以及将 x 映射到因子。在某些情况下,可能需要添加方差分析表或汇总表作为绘图注释。...geom_point() + stat_correlation() + facet_wrap(~group) stat_poly_eq() and stat_poly_line() 可以为图形添加方程和曲线...(x, y)) + geom_point() + stat_poly_line(formula = formula) + stat_poly_eq(formula = formula) 将方程也作为一个字符串返回...,ggpmisc可以方便的给我们的图片添加公式、残差等等多种注释,ggpmisc包也在不断更新中,我们也期待以后会有更强大的功能!

2.2K20

ggplot2绘制散点图配合拟合曲线和边际分布直方图

图形展示 图形解读 ❝此图使用经典的企鹅数据集进行展示,在散点图的基础上按照分组添加拟合曲线及回归方程与R,P值,后使用ggExtra添加密度曲线与数据分布直方图,使用已有R包进行绘制非常的方便,此图大概有以下几点注意事项...它们有一些相似之处,但也有一些关键的区别。 ❞ stat_poly_line 是一个在 ggplot2 图形中添加多项式回归线的函数。这个函数直接计算多项式回归模型,并将拟合线添加到图形上。...它允许指定多项式的阶数,即回归方程中最高次项的次数。可直接在图形上添加拟合线,而不是基于数据点的平滑。 geom_smooth是一个更通用的函数,用于在 ggplot2 图形中添加平滑曲线或拟合线。...它可以自动选择平滑参数,还可以显示拟合线周围的置信区间。 回归方程的添加 ❝stat_poly_eq:用于添加多项式回归方程和相关统计量(如 R2、p 值等)的标签。...stat_poly_line(formula = y ~ x) + # 添加线性回归线 stat_poly_eq(formula = y ~ x, # 添加线性回归方程和统计量

2K70
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用曲线将多点连成一条平滑的曲线

    之前在写一个项目需要把多点连成平滑的曲线,而且这些点是无法预知的。开始想到用贝塞尔曲线,但是具体贝塞尔曲线的控制点要怎么设定,怎样让多点都落在曲线上而且保持曲线的平滑,就一直没想到。...后来参考了一篇《Android 使用贝塞尔曲线将多点连成一条平滑的曲线》的博文,地址:http://m.blog.csdn.net/article/details?...id=52667896 写得挺好的,不过没太仔细研究 原代码是java的,然后就直接用原代码改成了js版本的(虽然最后用了其他方式来实现……不过这个如果做什么在线生成图表什么的可以用上) 效果: ?...Paste_Image.png 后面的点契合的挺好的 代码: var mPointList = [{x:10,y:10},{x:120,y:40},{x:260,y:180},{x:380,y:40},...currentPointX; nextPointY = currentPointY; } if (valueIndex == 0) { // 将Path

    1.6K00

    七种常用回归技术,如何正确选择回归模型?

    在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 ? 我们为什么使用回归分析?...在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。...在一个线性方程中,预测误差可以分解为2个子分量。一个是偏差,一个是方差。预测错误可能会由这两个分量或者这两个中的任何一个造成。在这里,我们将讨论由方差所造成的有关误差。...第一个是最小二乘项,另一个是β2(β-平方)的λ倍,其中β是相关系数。为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。...它也将取决于你的目的。可能会出现这样的情况,一个不太强大的模型与具有高度统计学意义的模型相比,更易于实现。

    1.1K50

    回归分析技术|机器学习

    在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 ? 我们为什么使用回归分析?...在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。...在一个线性方程中,预测误差可以分解为2个子分量。一个是偏差,一个是方差。预测错误可能会由这两个分量或者这两个中的任何一个造成。在这里,我们将讨论由方差所造成的有关误差。...第一个是最小二乘项,另一个是β2(β-平方)的λ倍,其中β是相关系数。为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。...它也将取决于你的目的。可能会出现这样的情况,一个不太强大的模型与具有高度[*]统计学意义的模型相比,更易于实现。

    96740

    回归分析的七种武器

    在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 ? 我们为什么使用回归分析?...在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。...在一个线性方程中,预测误差可以分解为2个子分量。一个是偏差,一个是方差。预测错误可能会由这两个分量或者这两个中的任何一个造成。在这里,我们将讨论由方差所造成的有关误差。...第一个是最小二乘项,另一个是β2(β-平方)的λ倍,其中β是相关系数。为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。...它也将取决于你的目的。可能会出现这样的情况,一个不太强大的模型与具有高度统计学意义的模型相比,更易于实现。

    61360

    你应该掌握的七种回归技术

    在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 ? 我们为什么使用回归分析?...在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。...在一个线性方程中,预测误差可以分解为2个子分量。一个是偏差,一个是方差。预测错误可能会由这两个分量或者这两个中的任何一个造成。在这里,我们将讨论由方差所造成的有关误差。...第一个是最小二乘项,另一个是β2(β-平方)的λ倍,其中β是相关系数。为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。...它也将取决于你的目的。可能会出现这样的情况,一个不太强大的模型与具有高度统计学意义的模型相比,更易于实现。

    73530

    【算法】七种常用的回归算法

    在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 ? 我们为什么使用回归分析?...在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。...在一个线性方程中,预测误差可以分解为2个子分量。一个是偏差,一个是方差。预测错误可能会由这两个分量或者这两个中的任何一个造成。在这里,我们将讨论由方差所造成的有关误差。...第一个是最小二乘项,另一个是β2(β-平方)的λ倍,其中β是相关系数。为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。...它也将取决于你的目的。可能会出现这样的情况,一个不太强大的模型与具有高度统计学意义的模型相比,更易于实现。

    29.9K82

    详解:7大经典回归模型

    在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 我们为什么使用回归分析?...在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。...在一个线性方程中,预测误差可以分解为2个子分量。一个是偏差,一个是方差。预测错误可能会由这两个分量或者这两个中的任何一个造成。在这里,我们将讨论由方差所造成的有关误差。...第一个是最小二乘项,另一个是β2(β-平方)的λ倍,其中β是相关系数。为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。...5.它也将取决于你的目的。可能会出现这样的情况,一个不太强大的模型与具有高度统计学意义的模型相比,更易于实现。

    1.2K41

    超实用!详解7大经典回归模型,建议收藏!

    在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 我们为什么使用回归分析?...在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。...在一个线性方程中,预测误差可以分解为2个子分量。一个是偏差,一个是方差。预测错误可能会由这两个分量或者这两个中的任何一个造成。在这里,我们将讨论由方差所造成的有关误差。...第一个是最小二乘项,另一个是β2(β-平方)的λ倍,其中β是相关系数。为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。...5.它也将取决于你的目的。可能会出现这样的情况,一个不太强大的模型与具有高度统计学意义的模型相比,更易于实现。

    13010

    七种常用回归技术,如何正确选择回归模型?

    在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 ? 我们为什么使用回归分析?...如下方程所示: y=a+b*x^2 在这种回归技术中,最佳拟合线不是直线。而是一个用于拟合数据点的曲线。 重点 虽然会有一个诱导可以拟合一个高次多项式并得到较低的错误,但这可能会导致过拟合。...在一个线性方程中,预测误差可以分解为2个子分量。一个是偏差,一个是方差。预测错误可能会由这两个分量或者这两个中的任何一个造成。在这里,我们将讨论由方差所造成的有关误差。...第一个是最小二乘项,另一个是β2(β-平方)的λ倍,其中β是相关系数。为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。...它也将取决于你的目的。可能会出现这样的情况,一个不太强大的模型与具有高度统计学意义的模型相比,更易于实现。

    7.9K71

    七种回归分析方法 个个经典

    在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 我们为什么使用回归分析?...在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。...在一个线性方程中,预测误差可以分解为2个子分量。一个是偏差,一个是方差。预测错误可能会由这两个分量或者这两个中的任何一个造成。在这里,我们将讨论由方差所造成的有关误差。...第一个是最小二乘项,另一个是β2(β-平方)的λ倍,其中β是相关系数。为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。...5.它也将取决于你的目的。可能会出现这样的情况,一个不太强大的模型与具有高度统计学意义的模型相比,更易于实现。

    1K51

    你应该掌握的七种回归技术

    在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 ? 我们为什么使用回归分析?...在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。...在一个线性方程中,预测误差可以分解为2个子分量。一个是偏差,一个是方差。预测错误可能会由这两个分量或者这两个中的任何一个造成。在这里,我们将讨论由方差所造成的有关误差。...第一个是最小二乘项,另一个是β2(β-平方)的λ倍,其中β是相关系数。为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。...它也将取决于你的目的。可能会出现这样的情况,一个不太强大的模型与具有高度统计学意义的模型相比,更易于实现。

    89661

    机器学习回归模型的最全总结!

    在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 我们为什么使用回归分析?...而是一个用于拟合数据点的曲线。 重点: 虽然会有一个诱导可以拟合一个高次多项式并得到较低的错误,但这可能会导致过拟合。...在一个线性方程中,预测误差可以分解为2个子分量。一个是偏差,一个是方差。预测错误可能会由这两个分量或者这两个中的任何一个造成。在这里,我们将讨论由方差所造成的有关误差。...第一个是最小二乘项,另一个是β2(β-平方)的λ倍,其中β是相关系数。为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。...R2的缺点: 随着输入特征数量的增加,R2会趋于相应的增加或者保持不变,但永远不会下降,即使输入特征对我们的模型不重要(例如,将面试当天的气温添加到我们的示例中,R2是不会下降的即使温度对输出不重要)。

    1.8K20

    计算与推断思维 十三、预测

    回归直线的方程 在回归中,我们使用一个变量(我们称x)的值来预测另一个变量的值(我们称之为y)。 当变量x和y以标准单位测量时,基于x预测y的回归线斜率为r并通过原点。...因此,回归线的方程可写为: 在数据的原始单位下,就变成了: 原始单位的回归线的斜率和截距可以从上图中导出。 下面的三个函数计算相关性,斜率和截距。...回归线的方程允许我们,根据给定重量(磅)计算估计高度(英寸): 线的斜率衡量随着重量的单位增长的估计高度的增长。...回归线是最小化均方误差的唯一直线。 这就是回归线有时被称为“最小二乘直线”的原因。 最小二乘回归 在前面的章节中,我们开发了回归直线的斜率和截距方程,它穿过一个橄榄形的散点图。...因此,最好拟合曲线而不是直线。 研究假设举起的重量与铅球距离之间是二次关系。 所以让我们使用二次函数来预测,看看我们能否找到最好的曲线。

    2.4K10

    【学习】让你欲罢不能的回归分析

    在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 ? 我们为什么使用回归分析?...在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。...在一个线性方程中,预测误差可以分解为2个子分量。一个是偏差,一个是方差。预测错误可能会由这两个分量或者这两个中的任何一个造成。在这里,我们将讨论由方差所造成的有关误差。...第一个是最小二乘项,另一个是β2(β-平方)的λ倍,其中β是相关系数。为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。...5.它也将取决于你的目的。可能会出现这样的情况,一个不太强大的模型与具有高度统计学意义的模型相比,更易于实现。

    1.2K80

    使用 Cloud-init 将节点添加到你的私有云中

    它也是一个可以在你的“家庭私有云”中使用的很好的工具,可以为你的家庭实验室的虚拟机和物理机的初始设置和配置添加一点自动化 —— 并了解更多关于大型云提供商是如何工作的信息。...本文将向你展示如何在客户端设备上安装 Cloud-init,并设置一个运行 Web 服务的容器来响应客户端的请求。...它可以包含在树莓派和单板计算机的磁盘镜像中,也可以添加到用于 配给(provision)虚拟机的镜像中。...在容器文件中添加以下行以将 meta-data 文件复制到新镜像中。...在数据源稍显复杂的情况下,将新的物理(或虚拟)机器添加到家中的私有云中,可以像插入它们并打开它们一样简单。

    1.8K30

    贝塞尔曲线方程---插值算法的完美解释(附matlab完整代码)

    上面的可视化大家也看到了,贝塞尔曲线,贝塞尔曲线方程,其实并不难理解,类似于我们高中时期学习的圆锥曲线,和圆锥曲线方程之间的关系; 已知贝塞尔曲线的方程,我们就可以画出来贝塞尔曲线,已知椭圆方程,我们就可以画出来椭圆...,曲面的方程表达式,球体的表达式之类的,因此,这个贝塞尔曲线方程就是我们下一个话题重点研究的内容; 贝塞尔曲线实际上意义就是反应的不同控制点位置对于我们的插值点的影响程度,这个程度就是使用方程前面的系数进行表示的...; 3.何为贝塞尔曲线方程 下面的这个就是我使用搜索引擎得到的结果,是为了让大家看到这个方程的表达形式,并试着观察一下,这个方程随着阶数的增加,有没有什么规律?...,我们就可以理解为一个控制点前面的系数,第一行相当于是一个控制点,对应的时0阶贝塞尔曲线方程; 第二行两个控制点,一阶贝塞尔曲线方程,第三行三个控制点,对应二阶的贝塞尔曲线方程,以此类推 4.Matlab...3/16为例的,黄色直线上面的点就是我们方程曲线的点,相信你会明白这个点是怎么来的; 就是在三个点连成的曲线上面找到3/16的位置,两个点连成曲线(即黄色直线),再取3/16比例,找到这个方程上面的点;

    17410
    领券