首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python中得可视化:使用Seaborn绘制常用图表

1.分布曲线 我们可以将Seaborn的分布图与Matplotlib的直方图进行比较。它们都提供非常相似的功能。这里我们画的不是直方图中的频率图,而是y轴上的近似概率密度。...特定类别数的分布图 在上图中,没有概率密度曲线。要移除曲线,我们只需在代码中写入' kde = False '。 我们还可以向分布图提供与matplotlib类似的容器的标题和颜色。...Rating栏的条形图 与饼图类似,我们也可以定制柱状图,使用不同的柱状图颜色、图表标题等。 3.散点图 到目前为止,我们只处理数据集中的一个数字列,比如评级、评论或大小等。...热图的最终目的是用彩色图表显示信息的概要。它利用了颜色强度的概念来可视化一系列的值。 我们在足球比赛中经常看到以下类型的图形, ? 足球运动员的热图 在Seaborn中创建这个类型的图。...热图如下所示, ? 使用Seaborn创建默认热图 我们可以对上面的图进行一些自定义,也可以改变颜色梯度,使最大值的颜色变深,最小值的颜色变浅。

6.7K30

Seaborn-让绘图变得有趣

但是,由于这不是分类数据,并且只有一个分类列,因此决定使用它。 seaborn中的地块也可以text使用来添加到每个条annotate。在仔细查看数据集时,发现缺少许多元数据信息。...计数地块 在上图中,可以看到该列的数据高度不对称。...上图中的蓝线定义了密度的分布。 小提琴图 在与seaborn合作之前,经常在各种文章中看到这些看起来很怪异的情节,并且想知道它们是什么。...该pandas数据框中有一个调用的函数corr()生成相关矩阵,当把它输入到seaborn热图,得到了一个美丽的热图。设置annot为True可确保相关性也用数字定义。...plt.figure(figsize = (12, 8)) sns.heatmap(dataset.corr(), annot = True) Seaborn的热图 尽管整个图很有用,但可以从查看最后一列开始

3.6K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ​再见 Seaborn!Altair 数据可视化已超神

    使用 Altair,我们可以通过类似于 Seaborn 图的条形图、直方图、散点图和气泡图、网格图和误差图等创建交互式数据可视化。...我们将 DataFrame 作为数据传递,上述两个变量为 x 和 y,而 'origin' 作为图例颜色。...为了自定义颜色,我们从 Seaborn 的预定义调色板中选择了一个Palette='magma_r'。...然而,在这两个图中,我们可以看到最大的车辆数量是在 76 年之后,并且在 82 年尤为突出。此外,我们使用了一个配置命令来修改条的颜色和不透明度,这在 Altair 情节的情况下就像一个主题。...高级绘图 此外,还有其他高级绘图,如棒棒糖或破折号和点图、热图、树状图,可以使用这两个库进行绘制(Seaborn 可能为此需要一些额外的包),但在此比较中这些已被排除在外以保持它简单的。

    9.6K30

    Python中4种更快速,更轻松的数据可视化方法(含代码)

    热图是数据的矩阵表示,其中矩阵值用颜色来表示。...不同的颜色代表不同的大小,矩阵索引将2个项目或特征链接在一起进行比较。热图非常适合显示多个特征变量之间的关系,因为你可以直接将值的大小视为不同的颜色。...你还可以通过查看热图中的其他点来查看数据集中每种关系如何与的其他关系进行比较。由于它非常直观,因此颜色确实提供了简单而且直观的解释。 ? 现在我们来看看代码。...seaborn库可以用于绘制比matplotlib更高级的图,通常需要更多组件,如许多颜色,图形或变量。matplotlib用于显示图,numpy生成数据,pandas处理数据!...它的seaborn的代码同样超级简单!这一次,我们将创建一个偏态分布。如果你发现某些颜色或阴影在视觉上效果更好,那么有非常多的可选参数都会使图看起来更清晰。

    1.7K20

    关系(二)利用python绘制热图

    关系(二)利用python绘制热图 热图 (Heatmap)简介 1 热图适用于显示多个变量之间的差异,通过颜色判断彼此之间是否存在相关性。...的heatmap函数创建 sns.heatmap(df) plt.show() 2 定制多样化的热图 自定义热图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。...参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。...seaborn主要利用heatmap绘制热图,可以通过seaborn.heatmap[1]了解更多用法 不同输入格式的热图 import matplotlib.pyplot as plt import...g = sns.clustermap(df, standard_scale=1) # 标准化处理 plt.show() 5 总结 以上通过seaborn的heatmap快速绘制热图,并通过修改参数或者辅以其他绘图知识自定义各种各样的热图来适应相关使用场景

    27510

    Seaborn的15种可视化图表详解

    在本文中,将介绍Seaborn的最常用15个可视化图表 Seaborn是一个非常好用的数据可视化库,它基于Matplotlib,并且提供了一个高级接口,使用非常见简单,生成图表也非常的漂亮。...我们为x轴选择一个分类列,为y轴(花瓣长度)选择一个数值列,我们看到它创建了一个为每个分类列取平均值的图。...sns.boxplot(x='species',y='sepal_length',data=data,hue='species') 7、热图 热图是数据的二维可视化表示,它使用颜色来显示变量的值。...热图经常用于显示数据集中的各种因素如何相互关联,比如相关系数。...联合分布图将两个不同的图组合在一个表示中,可以展示两个变量之间的关系(二元关系)。

    37221

    使用Seaborn和Pandas进行相关性分析和可视化

    让我们简要地看看什么是相关性,以及如何使用热图在数据集中找到强相关性。 什么是相关性? 相关性是一种确定数据集中的两个变量是否以任何方式关联的方法。关联具有许多实际应用。...眼睛颜色列已分类为1 =蓝色,2 =绿色和3 = 棕色。 ? 让我们使用以上数据绘制3个散点图。我们将研究以下3种关系:年龄和体重,年龄和乳牙以及年龄和眼睛的颜色。 年龄和体重 ?...直观上,这也是有道理的。随着孩子年龄的增长,他们乳牙会被替换掉。 年龄和眼睛颜色 ? 在上一个散点图中,我们看到一些点没有明显的斜率。该相关性的r值为-0.126163。...但是,必须有一种更简单的方法来查看整个数据集。 使用Seaborn进行可视化 我们可以通过seaborn快速生成热图。为什么使用seaborn?...我们可以探索另一个很酷的假设。 在几秒钟内,我们就能看到如何输入数据,并至少可以探索3个想法。 结论 通过使用seaborn的热图,我们可以轻松地看到最相关的位置。

    2.5K20

    14个Seaborn数据可视化图

    import seaborn as sns 了解你的数据 图中使用的数据集为著名的泰坦尼克数据集(图1),下面将数据集用变量df表示。 ?...我们可以改变箱子的数量,即直方图中垂直条的数量 import seaborn as sns sns.distplot(x = df['age'], bins = 10) ?...图8:a)“年龄”的箱形图,b)“年龄”和“性别”不同类别的箱形图 d.Violin图 它类似于箱型图,但它也提供了关于数据分布的补充信息。...图13:泰坦尼克号数据集的关联矩阵热图。 同样的矩阵现在表达了更多的信息。 另一个非常明显的例子是使用heatmap来理解缺失的值。...图14:泰坦尼克号数据中缺失值的热图。 b.聚类图 如果我们有一个矩阵数据,并想要根据其相似性对一些特征进行分组,聚类映射可以帮助我们。先看一下热图(图13),然后再看一下聚类图(图15)。

    2.1K62

    6个顶级Python可视化库

    优点 减少的代码 Seaborn提供了一个更高层次的接口来生成与Matplotlib类似的图。这意味着你可以用更少的代码和更漂亮的视觉设计来实现类似的可视化。...尽管它没有像Matplotlib那样广泛的集合,但Seaborn可以用更少的代码使流行的绘图,如柱状图、盒状图、热图等看起来更漂亮。...应用于一个图的变化可以自动反映在另一个具有类似变量的图中。这个功能允许探索多个地块之间的关系。...例如,使用泰坦尼克号数据创建同样的计数图,除了需要提前转换数据外,如果我们想让图表看起来漂亮,还需要设置条形图的宽度和颜色。...例如,如果我们想将全球Github用户的总星数热图可视化,并识别出拥有大量顶级用户和星数的地区,Folium热图插件就可以实现这一目的。

    46420

    6个顶级Python可视化库!

    Seaborn也能做多种回归分析,统统只需一行代码 优点 减少的代码 Seaborn提供了一个更高层次的接口来生成与Matplotlib类似的图。...尽管它没有像Matplotlib那样广泛的集合,但Seaborn可以用更少的代码使流行的绘图,如柱状图、盒状图、热图等看起来更漂亮。...应用于一个图的变化可以自动反映在另一个具有类似变量的图中。这个功能允许探索多个地块之间的关系。...例如,使用泰坦尼克号数据创建同样的计数图,除了需要提前转换数据外,如果我们想让图表看起来漂亮,还需要设置条形图的宽度和颜色。...例如,如果我们想将全球Github用户的总星数热图可视化,并识别出拥有大量顶级用户和星数的地区,Folium热图插件就可以实现这一目的。

    1.1K11

    6个顶级Python可视化库

    Seaborn也能做多种回归分析,统统只需一行代码 优点 减少的代码 Seaborn提供了一个更高层次的接口来生成与Matplotlib类似的图。...尽管它没有像Matplotlib那样广泛的集合,但Seaborn可以用更少的代码使流行的绘图,如柱状图、盒状图、热图等看起来更漂亮。...应用于一个图的变化可以自动反映在另一个具有类似变量的图中。这个功能允许探索多个地块之间的关系。...例如,使用泰坦尼克号数据创建同样的计数图,除了需要提前转换数据外,如果我们想让图表看起来漂亮,还需要设置条形图的宽度和颜色。...例如,如果我们想将全球Github用户的总星数热图可视化,并识别出拥有大量顶级用户和星数的地区,Folium热图插件就可以实现这一目的。

    91520

    seaborn关联图表之折线图和散点图

    折线图和散点图是最常用的展示两个变量间关系的图表,在seaborn中,通过以下两个函数来绘制对应的图形 1. satterplot, 绘制散点图 2. lineplot, 绘制折线图 seaborn采用了类似...除此之外,其他列的变量可以作为属性的映射,常用的属性映射列表如下 1. hue, 用于映射颜色 2. size,用于映射线条的宽度或者点的大小 3. style, 用于映射线条的样式或者点的样式 散点图的代码示例如下...seaborn会自动进行属性映射,并将对应的属性添加到图例上,在映射时,我们可以通过以下两类参数来控制对应的映射属性 1. order 该系列包含了以下3个参数 1. hue_order 2. size_order...从图例可以看出,会按照hue_order自定的顺序去映射颜色梯度,其实style属性也是类似的效果。...但是有一个例外,就是size属性,当size属性对应的列为数值时,seaborn会自动将数值设置为点的大小,此时指定size_order属性时没用的。

    2.3K31

    万字长文 | 超全代码详解Python制作精美炫酷图表教程

    生活阶梯(幸福指数)与人均GDP(金钱)正相关的正则图 本文将探讨三种用Python可视化数据的不同方法。...Seaborn双标图,散点图、二元KDE和Hexbin图都在中心图中,边缘分布在中心图的左侧和顶部。 散点图 散点图是一种可视化两个变量联合密度分布的方法。...人均GDP与生活阶梯的关系,不同颜色表示不同大洲和人口规模 小提琴图 小提琴图结合了盒状图和核密度估计值。它的作用类似于盒状图,显示了定量数据在分类变量之间的分布,以便对这些分布进行比较。...FacetGrid— 热图 我最喜欢的一种绘图类型就是FacetGrid的热图,即每一个网格都有热图。...Facet热图,外层的行显示在一年内,外层的列显示人均GDP,内层的行显示政治清廉,内层的列显示大洲。我们看到幸福指数朝着右上方向增加(即,高人均GDP和高政治清廉)。

    3.2K10

    10个实用的数据可视化的图表总结

    用于深入了解数据的一些独特的数据可视化技术 可视化是一种方便的观察数据的方式,可以一目了然地了解数据块。我们经常使用柱状图、直方图、饼图、箱图、热图、散点图、线状图等。...我已经展示了用于查找 sepal_width 和 sepal_length 列的密度的图。 如果仔细观察图表,我们会发现总面积被分成了无数个六边形。每个六边形覆盖特定区域。我们注意到六边形有颜色变化。...六边形有的没有颜色,有的是淡绿色,有的颜色很深。根据图右侧显示的色标,颜色密度随密度变化。比例表示具有颜色变化的数据点的数量。六边形没有填充颜色,这意味着该区域没有数据点。...7、点图 下图中有一些名为误差线的垂直线和其他一些连接这些垂直线的线。让我们看看它的确切含义。...,将一些额外的层次信息集成到图中 [7]。

    2.4K50

    Python自动化办公-玩转图表

    = 2 #图标大小 ) plt.show() 代码的逻辑: 第一部分,sns.load_dataset 加载数据源,数据源可以由二维元组组成类似 Excel 一样的多行多列的数据,数据中的第一行和第一列会作为标题...绘制的散点图中的每个点,也可以单独设置它们的样式。...例如我指定了每个点的大小“height=2”,以及指定了色彩样式“palette='husl'”,并为每个列指定不同的颜色“hue = 'species'”。...pyecharts 的数据格式,要基于不同的图形类型,使用不同的格式。但是一般情况下,是多行多列组成的类似 Excel 表格的格式,这种格式在 Python 中一般使用嵌套元组的形式进行保存。...和我们学习 seaborn 类似,你可以参考图例,也可以参考分类来学习 pyecharts 支持的动态图表。

    99850

    Python数据可视化,完整版操作指南(建议收藏)

    使用命令描述,我们将看到数据如何分布,最大值,最小值,均值…… df.describe() ? 使用info命令,我们将看到每列包含的数据类型。...我们可以在同一张图中制作多个变量的图,然后进行比较。...如果您使用的是Jupyter Notebook,则在制作图表之前,将%matplotlib内联添加到文件的开头并运行它。 我们可以在一个图形中制作多个图形。...我们可以在同一张图中添加两个以上变量的信息。为此,我们使用颜色和大小。...Seaborn提供的最受欢迎的图形之一是热图。通常使用它来显示数据集中变量之间的所有相关性: sns.heatmap(df.corr(),annot = True,fmt ='。2f') ?

    1.9K31
    领券