首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

将自定义keras指标输入分成两个独立的指标,并找出中值误差

将自定义Keras指标输入分成两个独立的指标,并找出中值误差。

在Keras中,我们可以通过自定义指标来评估模型的性能。要将自定义Keras指标分成两个独立的指标,我们可以使用Keras的meanstd函数来计算中值误差。

首先,我们需要定义一个自定义指标函数,该函数将接收模型的真实标签和预测标签作为输入,并返回一个指标值。以下是一个示例的自定义指标函数,用于计算中值误差:

代码语言:txt
复制
import keras.backend as K

def median_error(y_true, y_pred):
    error = K.abs(y_true - y_pred)
    median = K.median(error)
    return median

在这个例子中,我们使用Keras的abs函数计算真实标签和预测标签之间的绝对误差,然后使用median函数计算误差的中值。

接下来,我们可以将这个自定义指标函数应用于模型的评估过程中。例如,在编译模型时,我们可以将这个自定义指标函数作为metrics参数的一部分传递给compile函数:

代码语言:txt
复制
model.compile(optimizer='adam', loss='mse', metrics=[median_error])

在这个例子中,我们使用均方误差(MSE)作为损失函数,然后将自定义的中值误差指标作为模型的评估指标。

当我们训练模型并评估其性能时,Keras将计算每个批次的中值误差,并在训练过程中显示平均中值误差。

关于Keras自定义指标的更多信息,请参考腾讯云的Keras文档:Keras自定义指标

请注意,以上答案中没有提及亚马逊AWS、Azure、阿里云、华为云、天翼云、GoDaddy、Namecheap、Google等流行的云计算品牌商。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python安装TensorFlow 2、tf.keras和深度学习模型的定义

学习python深度学习的最好方法是边做边做。 我设计了每个代码示例,以使用最佳实践并使其独立,以便您可以将其直接复制并粘贴到您的项目中,并使其适应您的特定需求。 教程分为五个部分。...2.深度学习模型生命周期 在本部分中,您将发现深度学习模型的生命周期以及可用于定义模型的两个tf.keras API。...训练应用选定的优化算法以最小化选定的损失函数,并使用误差算法的反向传播更新模型。...它涉及显式地将一层的输出连接到另一层的输入。每个连接均已指定。 首先,必须通过Input类定义输入层,并指定输入样本的形状。定义模型时,必须保留对输入层的引用。 ......#定义层 x_in = Input(shape=(8,)) 接下来,可以通过调用层并传递输入层来将完全连接的层连接到输入。这将返回对该新层中的输出连接的引用。

1.6K30

Python安装TensorFlow 2、tf.keras和深度学习模型的定义

学习python深度学习的最好方法是边做边做。 我设计了每个代码示例,以使用最佳实践并使其独立,以便您可以将其直接复制并粘贴到您的项目中,并使其适应您的特定需求。 教程分为五个部分。...2.深度学习模型生命周期 在本部分中,您将发现深度学习模型的生命周期以及可用于定义模型的两个tf.keras API。...训练应用选定的优化算法以最小化选定的损失函数,并使用误差算法的反向传播更新模型。...它涉及显式地将一层的输出连接到另一层的输入。每个连接均已指定。 首先,必须通过Input类定义输入层,并指定输入样本的形状。定义模型时,必须保留对输入层的引用。...有关功能性API的更多信息,请参见: TensorFlow中的Keras功能API 既然我们熟悉了模型生命周期以及可用于定义模型的两个API,那么让我们来看一下开发一些标准模型。

1.5K30
  • 评估指标metrics

    ) 评估指标(tf.keras.metrics) 优化器(tf.keras.optimizers) 回调函数(tf.keras.callbacks) 如果把模型比作一个房子,那么中阶API就是【模型之墙...如果有需要,也可以自定义评估指标。 自定义评估指标需要接收两个张量y_true,y_pred作为输入参数,并输出一个标量作为评估值。...也可以对tf.keras.metrics.Metric进行子类化,重写初始化方法, update_state方法, result方法实现评估指标的计算逻辑,从而得到评估指标的类的实现形式。...二,常用内置评估指标 MeanSquaredError(平方差误差,用于回归,可以简写为MSE,函数形式为mse) MeanAbsoluteError (绝对值误差,用于回归,可以简写为MAE,函数形式为...我们以金融风控领域常用的KS指标为例,示范自定义评估指标。

    1.8K30

    Keras中创建LSTM模型的步骤

    例如,我们可以通过两个步骤完成操作: model = Sequential() model.add(LSTM(2)) model.add(Dense(1)) 但是,我们也可以通过创建层数组并传递到序列的构造函数来一步完成...这是 Keras 中的有用容器,因为传统上与图层关联的关注点也可以拆分并添加为单独的图层,清楚地显示它们在数据从输入到预测转换中的作用。...例如,下面是编译定义的模型并指定随机梯度下降 (sgd) 优化算法和用于回归类型问题的均方误差 (mean_squared_error) 损失函数的示例。...编译网络: 我们将使用有效的ADAM优化算法与默认配置和平均平方误差损失函数,因为它是一个回归问题。 训练网络: 我们将网络训练1000轮,并使用与训练集中模式数相等的批处理大小。...、对整个序列进行预测时网络的均平方误差损失以及每个输入模式的预测。

    3.7K10

    Keras中神经网络模型的5阶段生命周期

    [jp0j2317q1.png] Keras中神经网络模型的5阶生命周期 第1步 定义网络 第一步是定义你的神经网络。 神经网络在Keras中的本质是一系列堆叠起来的层。...例如,对于一个小型的多层感知机模型,如果第一层接受两个输入数据,中间层有5个神经元,输出层有一个神经元,可以如下定义: model = Sequential() model.add(Dense(5,...下面是一个展现如何编译定义好的模型的例子,(对于回归问题模型)指定随机梯度下降(sgd)作为优化算法和均方误差(mse)作为损失函数。...拟合网络需要指定训练数据,包括与输入层神经元数匹配的矩阵X和与输出层神经元数匹配的向量y。 网络模型会使用反向传播算法进行训练,并根据编译模型时指定的优化算法和损失函数进行优化。...在Keras中,用这个训练好的网络模型在测试数据集上进行测试时,可以看到包括损失函数的结果在内的所有在编译时指定的测量指标的结果,比如分类的准确度。Keras会返回一个包含这些评估指标的list。

    3.1K90

    前沿 | UC Berkeley提出特征选择新方法:条件协方差最小化

    在我们的框架中,将样本标签和最佳分类器所做的预测之间的均方差定义为预测误差。 方法 我们提出了一个可以在回归中同时描述依赖性和预测误差的标准。...然后,我们将响应变量的域上的 RKHS 算子定义为:在给定所选特征的情况下,描述输入数据上的响应变量的条件依赖。...我们用对应的经验分布计算得到的条件协方差算子的迹作为我们的优化标准,这也是最佳预测器在给定的输入数据域上的 RKHS 中的估计回归误差。在特征子集上直接最小化这个标准是很难计算的。...上图展示了模拟数据集上真实特征的中值等级(y 轴)随着样本量(x 轴)的变化。中值等级越低,性能越好。点画线代表最优的中值等级。...摘要:我们提出了一种特征选择方法,该方法利用基于核的独立性估计找出协变量的子集,可最大化预测响应变量。

    1.2K90

    数据报告分享|SPSS基于多元回归模型的电影票房预测

    本文通过利用回归模型对电影的票房(以及放映场数,观影人数)进行了研究,确定了决定电影的票房的重要因素。并讲述、论证了预测电影的票房是电影投资的至关重要的环节。...因此,该指标主要包括两个水平,一是畅销小说改编成剧本1,另一个则是非改编剧本也就是原创剧本0。...从变量的coefficient回归系数来看,导演的情况和是否有续集有正向关关系。 回归结果 残差分析可以对回归模型的假设条件即随机误差项是否独立同分布进行检验,同时还可以找出离群点。...回归结果 残差分析可以对回归模型的假设条件即随机误差项是否独立同分布进行检验,同时还可以找出离群点。...回归结果 残差分析可以对回归模型的假设条件即随机误差项是否独立同分布进行检验,同时还可以找出离群点。

    40700

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第12章 使用TensorFlow自定义模型并训练

    保存并加载包含自定义组件的模型 因为Keras可以保存函数名,保存含有自定义损失函数的模型也不成问题。当加载模型时,你需要提供一个字典,这个字典可以将函数名和真正的函数映射起来。...", metrics=[create_huber(2.0)]) 对于训练中的每个批次,Keras能计算该指标,并跟踪自周期开始的指标平均值。...此时,Keras能知道该层输入的形状,并传入build()方法,这对创建权重是必要的。例如,需要知道前一层的神经元数量,来创建连接权重矩阵(即,"kernel"):对应的是输入的最后一维的大小。...图12-3 自定义模型案例:包含残差块层,残块层含有跳连接 输入先进入一个紧密层,然后进入包含两个紧密层和一个添加操作的残差块(第14章会看见,残差块将输入和输出相加),经过3次同样的残差块,再通过第二个残差块...默认时,TF函数对每个独立输入的形状和数据类型的集合,生成了一个新的计算图,并缓存以备后续使用。

    5.3K30

    keras系列︱Sequential与Model模型、keras基本结构功能(一)

    :含义同fit的同名参数,但只能取0或1 sample_weight:numpy array,含义同fit的同名参数 本函数返回一个测试误差的标量值(如果模型没有其他评价指标),或一个标量的list(如果模型还有其他的评价指标...:损失函数,为预定义损失函数名或一个目标函数,参考损失函数 metrics:列表,包含评估模型在训练和测试时的性能的指标,典型用法是metrics=[‘accuracy’]如果要在多输出模型中为不同的输出指定不同的指标...:含义同fit的同名参数,但只能取0或1 sample_weight:numpy array,含义同fit的同名参数 本函数返回一个测试误差的标量值(如果模型没有其他评价指标),或一个标量的list(如果模型还有其他的评价指标...,两个Loss #因为我们输入和输出是被命名过的(在定义时传递了“name”参数),我们也可以用下面的方式编译和训练模型: model.compile(optimizer='rmsprop',...,输出两个模型,所以可以分为设置不同的模型训练参数 案例四:共享层:对应关系、相似性 一个节点,分成两个分支出去 import keras from keras.layers import Input,

    10.2K124

    使用Keras在训练深度学习模型时监控性能指标

    这使我们可以在模型训练的过程中实时捕捉模型的性能变化,为训练模型提供了很大的便利。 在本教程中,我会告诉你如何在使用Keras进行深度学习时添加内置指标以及自定义指标并监控这些指标。...为回归问题提供的性能评估指标 Keras为分类问题提供的性能评估指标 Keras中的自定义性能评估指标 Keras指标 Keras允许你在训练模型期间输出要监控的指标。...损失函数和Keras明确定义的性能评估指标都可以当做训练中的性能指标使用。 Keras为回归问题提供的性能评估指标 以下是Keras为回归问题提供的性能评估指标。...我经常喜欢增加的自定义指标是均方根误差(RMSE)。 你可以通过观察官方提供的性能评估指标函数来学习如何编写自定义指标。...[自定义性能评估指标——均方误差的折线图] 你的自定义性能评估函数必须在Keras的内部数据结构上进行操作而不能直接在原始的数据进行操作,具体的操作方法取决于你使用的后端(如果使用TensorFlow,

    8K100

    数据报告分享|SPSS基于多元回归模型的电影票房预测

    p=33190 本文通过利用回归模型对电影的票房(以及放映场数,观影人数)进行了研究,确定了决定电影的票房的重要因素。并讲述、论证了预测电影的票房是电影投资的至关重要的环节。...因此,该指标主要包括两个水平,一是畅销小说改编成剧本1,另一个则是非改编剧本也就是原创剧本0。...从变量的coefficient回归系数来看,导演的情况和是否有续集有正向关关系。 回归结果 残差分析可以对回归模型的假设条件即随机误差项是否独立同分布进行检验,同时还可以找出离群点。...导演的情况和是否有续集以及电影的时长对电影的演出场数有巨大的影响。 回归结果 残差分析可以对回归模型的假设条件即随机误差项是否独立同分布进行检验,同时还可以找出离群点。...回归结果 残差分析可以对回归模型的假设条件即随机误差项是否独立同分布进行检验,同时还可以找出离群点。

    51310

    数据分享|R语言逐步回归模型对电影票房、放映场数、观影人数预测可视化

    p=34335 本文通过利用回归模型帮助客户对电影的票房数据(以及放映场数,观影人数)进行了研究,确定了决定电影的票房的重要因素。并讲述、论证了预测电影的票房是电影投资的至关重要的环节。...因此,该指标主要包括两个水平,一是畅销小说改编成剧本1,另一个则是非改编剧本也就是原创剧本0。...残差分析可以对回归模型的假设条件即随机误差项是否独立同分布进行检验,同时还可以找出离群点。 显示结果如下: 由于模型中部分系数是不显著,因此需要对模型进行改进,本文采用迭代回归模型建模。...回归结果  残差分析可以对回归模型的假设条件即随机误差项是否独立同分布进行检验,同时还可以找出离群点。 显示结果如下: 由于模型中部分系数是不显著,因此需要对模型进行改进,本文采用逐步回归模型建模。...回归结果  残差分析可以对回归模型的假设条件即随机误差项是否独立同分布进行检验,同时还可以找出离群点。 显示结果如下: 由于模型中部分系数是不显著,因此需要对模型进行改进,本文采用逐步回归模型建模。

    28400

    keras系列︱Sequential与Model模型、keras基本结构功能(一)

    :含义同fit的同名参数,但只能取0或1 sample_weight:numpy array,含义同fit的同名参数 本函数返回一个测试误差的标量值(如果模型没有其他评价指标),或一个标量的list(如果模型还有其他的评价指标...:损失函数,为预定义损失函数名或一个目标函数,参考损失函数 metrics:列表,包含评估模型在训练和测试时的性能的指标,典型用法是metrics=[‘accuracy’]如果要在多输出模型中为不同的输出指定不同的指标...:含义同fit的同名参数,但只能取0或1 sample_weight:numpy array,含义同fit的同名参数 本函数返回一个测试误差的标量值(如果模型没有其他评价指标),或一个标量的list(如果模型还有其他的评价指标...,两个Loss #因为我们输入和输出是被命名过的(在定义时传递了“name”参数),我们也可以用下面的方式编译和训练模型: model.compile(optimizer='rmsprop', loss...,输出两个模型,所以可以分为设置不同的模型训练参数 案例四:共享层:对应关系、相似性 一个节点,分成两个分支出去 import keras from keras.layers import Input,

    1.8K40

    机器学习实践套路总结

    损失函数 损失函数用于衡量模型质量,它可以度量模型预测值与实际期望之间的差距,选择不合适的函数可能会影响模型的准确性,甚至影响收敛速度。 模型训练 数据准备好了,模型定义好了,就可以开始训练模型。...训练中涉及几个关键术语:迭代,表示模型计算和调整的一次过程;批,数据集每次以一批为单位输入到模型中;epoch,每当整个数据集被处理完称为一个epoch。...数据集分割 一般将整个数据集分成三组,比例是7:2:1,第一组为训练集,用于调整模型参数;第二种为验证集,用于比较多个模型直接的表现;第三组为测试集,用于测试训练得到的模型准确性。...模型效果 模型训练完后要看效果如何,要看看泛化的能力。 对于回归问题,可以通过下面几个指标来了解拟合效果。...平均绝对误差 中值绝对误差 均方误差等等 对于分类问题,可以通过下面几个指标来了解分类效果。 准确性 精确率 召回率 F值 混淆矩阵 对于聚类问题,可以通过下面几个指标来了解聚类效果。

    61811

    Deep learning基于theano的keras学习笔记(1)-Sequential模型

    事实上,Keras在内部会通过添加一个None将input_shape转化为batch_input_shape 有些2D层,如Dense,支持通过指定其输入维度input_dim来隐含的指定输入数据...指标列表metrics:对分类问题,我们一般将该列表设置为metrics=['accuracy']。指标可以是一个预定义指标的名字,也可以是一个用户定制的函数。...size=(1000, 1)) #多分类问题标签将整数转化为二值数,比如10分类问题标签2转化为0010000000 labels = to_categorical(labels, 10) # 训练 #两个输入...)或优化器对象 #loss:字符串(预定义损失函数名)或目标函数 #metrics:列表,包含评估模型在训练和测试时的网络性能的指标,典型用法是metrics=['accuracy'] #sample_weight_mode...:含义同fit的同名参数,但只能取0或1 #sample_weight:numpy array,含义同fit的同名参数 本函数返回一个测试误差的标量值(如果模型没有其他评价指标),或一个标量的list

    1.4K10

    【小白学习keras教程】一、基于波士顿住房数据集训练简单的MLP回归模型

    )和Keras MLP结构 每个MLP模型由一个输入层、几个隐藏层和一个输出层组成 每层神经元的数目不受限制 具有一个隐藏层的MLP- 输入神经元数:3 - 隐藏神经元数:4 - 输出神经元数:2 回归任务的...MLP 当目标(「y」)连续时 对于损失函数和评估指标,通常使用均方误差(MSE) from tensorflow.keras.datasets import boston_housing (X_train...X_test, y_test) = boston_housing.load_data() 数据集描述 波士顿住房数据集共有506个数据实例(404个培训和102个测试) 13个属性(特征)预测“某一地点房屋的中值...” 文件编号:https://keras.io/datasets/ 1.创建模型 Keras模型对象可以用Sequential类创建 一开始,模型本身是空的。...它是通过「添加」附加层和编译来完成的 文档:https://keras.io/models/sequential/ from tensorflow.keras.models import Sequential

    99120

    深度学习快速参考:1~5

    大多数神经元的核心是两个共同起作用的函数:线性函数和激活函数。 让我们从较高的角度看一下这两个组成部分。 神经元线性函数 神经元的第一部分是线性函数,其输出是输入的总和,每个输入乘以一个系数。...在传统的预测模型中,当我们尝试从偏差中发现误差并从方差中发现误差时,通常会有一些折衷。 因此,让我们看看这两个误差是什么: 偏差误差:偏差误差是模型引入的误差。...最后,我们将更深入地介绍 Keras 回调,甚至使用自定义回调来实现每个周期的受试者工作特征的曲线下面积(ROC AUC)指标。...输入层 和以前一样,我们的输入层需要知道数据集的维度。 我喜欢在一个函数中构建整个 Keras 模型,并允许该函数传递回已编译的模型。 现在,此函数仅接受一个参数,即特征数。...就像我们都在谈论同一件事一样,让我们​​在开始之前定义多分类。 想象我们有一个分类器,该分类器将各种水果的权重作为输入,并根据给定的权重来预测水果。

    1K10

    【tensorflow2.0】评价指标metrics

    如果有需要,也可以自定义评估指标。 自定义评估指标需要接收两个张量y_true,y_pred作为输入参数,并输出一个标量作为评估值。...也可以对tf.keras.metrics.Metric进行子类化,重写初始化方法, update_state方法, result方法实现评估指标的计算逻辑,从而得到评估指标的类的实现形式。...一,常用的内置评估指标 MeanSquaredError(平方差误差,用于回归,可以简写为MSE,函数形式为mse) MeanAbsoluteError (绝对值误差,用于回归,可以简写为MAE...我们以金融风控领域常用的KS指标为例,示范自定义评估指标。...,losses,metrics # 函数形式的自定义评估指标 @tf.function def ks(y_true,y_pred): y_true = tf.reshape(y_true,(

    1.8K20

    教你用 Keras 预测房价!(附代码)

    然而,你可能真正想要的是用相似的权重来处理样本,并使用错误度量如相对误差来降低拟合具有最大值的样本的重要性。 ? 实际上,你可以在 R 中使用非线性最小二乘法(nls)等软件包明确地做到这一点。...本文将展示如何在使用 Keras 时编写 R 中的自定义损失函数,并展示如何使用不同的方法对不同类型的数据集有利。...下面的图片是我将要用做文章预览封面的,它显示了根据波士顿房价数据集训练的四种不同 Keras 模型的培训历史。每个模型使用不同的损失函数,但是在相同的性能指标上评估,即平均绝对误差。...该函数使用 clip 操作来确保负值不会传递到日志函数,并且向 clip 后的结果+1,这可确保所有对数转换的输入都具有非负数结果。这个函数与我们在 R 中定义的函数类似。 ?...我们将探讨的两个自定义损失函数在下面的 R 代码段中定义。第一个函数,mean log absolute error(MLAE),计算预测值和实际值的对数变换之间的差值,然后对计算结果进行平均。

    2K20

    Keras 中神经网络模型的 5 步生命周期

    Keras 中神经网络模型的5步生命周期 步骤 1.定义网络 第一步是定义您的神经网络。 神经网络在 Keras 中定义为层序列。这些层的容器是 Sequential 类。...1layers = [Dense(2)] 2model = Sequential(layers) 网络中的第一层必须定义预期的输入数量。...例如,下面是编译定义模型并指定随机梯度下降(sgd)优化算法和均方误差(mse)损失函数的情况,用于回归类型问题。...安装网络需要指定训练数据,输入模式矩阵 X 和匹配输出模式 y 的阵列。 使用反向传播算法训练网络,并根据编译模型时指定的优化算法和损失函数进行优化。...这将提供对网络表现的估计,以便对未来看不见的数据进行预测。 该模型评估所有测试模式的损失,以及编译模型时指定的任何其他指标,如分类准确性。返回评估指标列表。

    1.9K30
    领券