首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

图像处理-图像噪声

图像噪声 噪声 加性噪声一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在。 高斯白噪声包括热噪声和散粒噪声。...加性高斯白噪声只是白噪声的一种,另有泊松白噪声等,加性高斯白噪声在通信领域中指的是一种各频谱分量服从均匀分布(即白噪声),且幅度服从高斯分布的噪声信号。...椒盐噪声 定义:椒盐噪声又称为双极脉冲噪声,这种噪声表现的特点是噪声像素的灰度值与邻域像素有着明显差异,而其余像素的灰度值保持不变,因此在图像中造成过亮或过暗的像素点。...椒盐噪声严重影响图像的视觉质量,给图像的边缘检测、纹理或者特征点提取等造成困难。...因为基于中值的滤波方法仅考虑图像局部区域像素点的顺序阶信息,没有充分利用像素点之间的相关性或相似性。噪声像素点的估计值可能与真实值有较大偏差,很难保持图像的细节信息。

1.8K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图像处理-噪声检测

    噪声检测 噪声检测方法 将噪声和信号区分开来是影响去噪效果好坏的重要因素之一。...T=(1/3)[sqrt{sum_{k=-1}^{k=1}sum_{r=-1}^{r=1}[f(i+k,j+r)-average(W[x_(i,j)])]^2} 上述开关阈值判断法的优点是利用了图像邻域内的所有灰度值信息...(2)极值法 极值法[2]的基本思想是:在一幅图像中,邻域内的像素点和其它像素点存在较大的关联性,大多数情况下信号点与邻近像素点的灰度值差别不是太大,但噪声点相差较大;被椒盐噪声污染的像素点通常以最大值或最小值...极值判断法在一定程度上能区分噪声点和信号点,尤其椒盐噪声图像,且该方法不用设置阈值,传统的自适应中值去噪方法即采用的是极值法,但该方法对椒盐去噪时,邻域内的某些极值信号像素点在判断过程中易被误判为噪声点...一种简单的椒盐噪声去噪 算法 . 计算机工程与 应用 , 2003, 39(20): 28-31 章节来源: 《图像椒盐噪声去噪算法研究及应用》-邓中东

    2.1K20

    图像条纹噪声消除

    图像条纹噪声消除 条纹噪声 sensor中由于传感器的差异产生固定模式噪声(FPN),FPN与条纹噪声有相似之处。...因为IRFPA上位于不同列的传感器采用不同的读出电路,读出电路偏置电压的差异会在红外图像上产生明暗。 目前针对IRFPA响应的非均匀校正算法主要包括*基于标准源定标*和*基于场景的校正方法*两类。...不但增加了系统复杂度,还会打断图像采集过程。 基于场景的非均匀性校正算法,如基于恒定统计算法,神经网络算法。...目前的非均匀性矫正算法的缺点: 1、收敛速度慢 2、不能实时性处理 3、条纹噪声具有方向性(水平垂直)和贯穿性 预设条纹噪声模型 ​ 假设图像中像素(i, j)的值 z(i, j)表示为: z(i...;增益 A(i, j)表示固定模式噪声中的乘性分量;偏置分量 B(i, j)表示固定模式噪声中的加性分量。

    2.2K10

    基于OpenCV实战的图像处理:色度分割

    通过HSV色阶使用彩色图像可以分割来分割图像中的对象,但这并不是分割图像的唯一方法。为什么大多数人偏爱色度而不是RGB / HSV分割? 可以获得RGB / HSV通道之间的比率。...我们将色度分割定义为利用RG通道的色度空间从图像中提取目标的过程。后者构成了一个二维颜色表示,它忽略了与强度值相关的图像信息。...因此,为了计算图像的RG色度,我们使用以下方程式: ? 我们主要只看r和g方程,因为从那里我们可以直观地计算b通道,让我们使用我们的老朋友Python将色度分割付诸实践。...图像处理步骤: 步骤1:计算图像的RG色度 这是通过使用引言中定义的方程式完成的。 步骤2:计算颜色值的2D直方图(原始图像) 这是通过使R和色度值均变平并将其输入hist2d函数中来实现的。...步骤4:计算补丁的RG色度 重复步骤1,但在步骤3中使用图像补丁 步骤5:计算颜色值的2D直方图(色标) 重复步骤2,但在步骤3中使用图像 到目前为止,我们已经获得了相关图像的RG色度值。

    1.3K10

    python数字图像处理-图像噪声与去噪

    python数字图像处理-图像噪声与去噪算法 ?...图像噪声 椒盐噪声 概述: 椒盐噪声(salt & pepper noise)是数字图像的一个常见噪声,所谓椒盐,椒就是黑,盐就是白,椒盐噪声就是在图像上随机出现黑色白色的像素。...给一副数字图像加上椒盐噪声的步骤如下: 指定信噪比 SNR (其取值范围在[0, 1]之间) 计算总像素数目 SP, 得到要加噪的像素数目 NP = SP * (1-SNR) 随机获取要加噪的每个像素位置...重复3,4两个步骤完成所有像素的NP个像素 输出加噪以后的图像 高斯噪声 概述: 加性高斯白噪声(Additive white Gaussian noise,AWGN)在通信领域中指的是一种功率谱函数是常数...中值滤波器对处理脉冲噪声(也称椒盐噪声)非常有效, 因为该噪声是以黑白点叠加在图像上面的. 与中值滤波相似的还有最大值滤波器和最小值滤波器.

    3.7K10

    MATLAB实现图像滤波及噪声消除

    图像增强是指根据特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法。其主要目的是使处理后的图像对某种特定的应用来说,比原始图像更适用。...图像可以看成是一个特殊的二维的信号,某一点的灰度级,其实就是图像信号上这一点的幅度,根据信号的概念,频率就是信号变化的快慢,所谓的频率也就是这个图空间上的灰度变换的快慢,或者是叫图像的梯度变化,在图像中...本篇博文使用MATLAB实现对添加了噪声的图像,使用滤波器对图像进行平滑处理,实现图像滤波及噪声消除。...选择图像增强功能,载入实验图像,选择不同的滤波器,观察图像处理结果,改变滤波器模板,比较图像处理结果,效果如下图所示: 对图像添加椒盐噪声和高斯噪声,比较各种滤波器对椒盐噪声的平滑效果,以及均值滤波和高斯滤波对高斯噪声的去噪效果...,效果如下图所示:  项目资源下载请参见:MATLAB实现图像滤波及噪声消除【图像处理实战】

    67220

    数字图像处理中的噪声过滤

    翻译 | 老赵 校对 | 余杭 大家好,在我们上一篇名为“数字图像处理中的噪声”的文章中,我们承诺将再次提供有关过滤技术和过滤器的文章。...噪声被独立地添加到每个像素。 让我们在进入二维图像之前首先考虑一维函数。 ? 在上述原始函数图像(图-1)中,如果我们将每个圆视为像素值,则平滑函数(图-2)是对每个像素的逐像素值求平均的结果。...假设噪声被独立地添加到每个像素。 根据此噪声量,把权重分配给不同的像素。 ? 2. 使用加权移动平均值非均匀权重进行过滤 以前假设像素的真实值与附近像素的真实值相似。 但并非总是如此。...这样可以平滑图像并保留图像信息,减少数据丢失量。 3. 二维图像中的加权移动平均 将图像视为二维矩阵,我们在整个图像上滑动一个小窗口(图5中的红色方块),用附近像素的平均值替换每个像素。...图 9 滤波器的分类 虽然有许多类型的滤波器,但在本文中我们将考虑4个主要用于图像处理的滤波器。 1. 高斯滤波器: 1.1 使用OpenCV和Python实现高斯滤波器: ?

    1.7K20

    将程序添加到右键菜单快速启动

    为新项命名:将新项命名为你想要显示在右键菜单中的名称,例如 "Open Windows Terminal"。 在新项下创建子项:右键单击新创建的项,选择 "新建",然后选择 "项"。...为子项命名:将子项命名为 "command"。...在右侧窗格中设置默认值:双击 "command" 子项,在弹出的编辑字符串对话框中,将数值数据设置为 Windows Terminal 的可执行文件路径。...默认情况下,Windows Terminal 的可执行文件路径为: C:\Users\你的用户名\AppData\Local\Microsoft\WindowsApps\wt.exe 注意:若安装了不同版本或将...为 String 值命名:将 String 值命名为 "Icon"。 设置图标路径:双击 "Icon" String 值,在弹出的编辑字符串对话框中,将数值数据设置为你图标文件的完整路径。

    44820

    Stable Diffusion 模型:从噪声中生成逼真图像

    你好,我是郭震 简介 Stable Diffusion 模型是一种生成式模型,可以从噪声中生成逼真的图像。它由 Google AI 研究人员于 2022 年提出,并迅速成为图像生成领域的热门模型。...扩散过程可以用一个Markov链来描述,将数据(如图像)从其原始分布逐渐转化为一个简单的噪声分布,例如高斯分布。 而反向过程则是从噪声分布生成真实数据的过程。...训练过程 Stable Diffusion模型的训练包括两个主要部分: a) 扩散器(Diffuser): 通过添加噪声数据,将训练数据集(如图像)逐渐转化为噪声分布。...通过最大似然估计,可以让生成模型学会从任意噪声分布和条件输入中生成真实数据。 生成过程 a) 文本编码: 利用预训练语言模型(如CLIP)将文本prompt编码为向量表示。...b) 反向扩散: 从纯噪声图像出发,生成模型利用文本prompt编码向量作为条件,逐步去噪生成图像。这是一个由噪声到数据的反向马尔可夫链过程。

    57510

    【从零学习OpenCV 4】图像中添加椒盐噪声

    椒盐噪声又被称作脉冲噪声,它会随机改变图像中的像素值,是由相机成像、图像传输、解码处理等过程产生的黑白相间的亮暗点噪声,其样子就像在图像上随机的撒上一些盐粒和黑椒粒,因此被称为椒盐噪声。...目前为止OpenCV 4中没有提供专门用于为图像添加椒盐噪声的函数,需要使用者根据自己需求去编写生成椒盐噪声的程序,本小节将会带领读者一起实现在图像中添加椒盐噪声。...判断图像通道数,通道数不同的图像中像素表示白色的方式也不相同。也可以根据需求只改变多通道图像中某一个通道的数值。 Step4:得到含有椒盐噪声的图像。...依照上述思想,在代码清单5-4中给出在图像中添加椒盐噪声的示例程序,程序中判断了输入图像是灰度图还是彩色图,但是没有对彩色图像的单一颜色通道产生椒盐噪声。...如果需要对某一通道产生椒盐噪声,只需要单独处理彩色图像每个通道即可。程序在图像中添加椒盐噪声的结果如图5-6、图5-7所示,由于椒盐噪声是随机添加的,因此每次运行结果会有所差异。

    2.2K20
    领券