首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas中的缺失值处理

在真实的数据中,往往会存在缺失的数据。...pandas在设计之初,就考虑了这种缺失值的情况,默认情况下,大部分的计算函数都会自动忽略数据集中的缺失值,同时对于缺失值也提供了一些简单的填充和删除函数,常见的几种缺失值操作技巧如下 1....默认的缺失值 当需要人为指定一个缺失值时,默认用None和np.nan来表示,用法如下 >>> import numpy as np >>> import pandas as pd # None被自动识别为...# 默认为0,表示去除包含 了NaN的行 # axis=1,表示去除包含了NaN的列 >>> df = pd.DataFrame({'A':[1, 2, None], 'B':[1, np.nan,...中的大部分运算函数在处理时,都会自动忽略缺失值,这种设计大大提高了我们的编码效率。

2.6K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    问与答98:如何根据单元格中的值动态隐藏指定的行?

    excelperfect Q:我有一个工作表,在单元格B1中输入有数值,我想根据这个数值动态隐藏行2至行100。...具体地说,就是在工作表中放置一个命令按钮,如果单元格B1中的数值是10时,当我单击这个命令按钮时,会显示前10行,即第2行至第11行;再次单击该按钮后,隐藏全部的行,即第2行至第100行;再单击该按钮,...则又会显示第2行至第11行,又单击该按钮,隐藏第2行至第100行……也就是说,通过单击该按钮,重复显示第2行至第11行与隐藏第2行至第100行的操作。...注:这是在chandoo.org的论坛上看到的一个贴子,有点意思。...A:使用的VBA代码如下: Public b As Boolean Sub HideUnhide() If b =False Then Rows("2:100").Hidden

    6.4K10

    用过Excel,就会获取pandas数据框架中的值、行和列

    在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...语法类似,但我们将字符串列表传递到方括号中。请注意双方括号: dataframe[[列名1,列名2,列名3,…]] 图6 使用pandas获取行 可以使用.loc[]获取行。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...想想如何在Excel中引用单元格,例如单元格“C10”或单元格区域“C10:E20”。以下两种方法都遵循这种行和列的思想。 方括号表示法 使用方括号表示法,语法如下:df[列名][行索引]。

    19.2K60

    VBA小技巧09:从非连续的单元格区域将值复制到指定单元格区域

    本文将给出一段VBA代码,从非连续的单元格区域复制值并粘贴到另外指定的单元格区域。 如下图1所示,将右侧两个单元格区域的数据复制到左侧的两个单元格区域中。 ? 图1 下图2是粘贴数据后的结果。 ?...首先定义数据区域名称和要复制到的区域的名称。 如下图4所示,将单元格区域H2:K4和G7:J9定义名称为“copyrng”。 ?...图4 同样,将单元格区域C2:F4和B7:E9定义名称为“pasterng”,如下图5所示。 ?...1 To i Range("pasterng").Areas(j).Value =Range("copyrng").Areas(j).Value Next End Sub 代码中,...-Len(Application.WorksheetFunction.Substitute(strAddress, ":","")) 得到非连续区域的个数。

    3.3K40

    Excel公式:提取行中的第一个非空值

    标签:Excel公式,INDEX函数,MATCH函数 有时候,工作表行中的数据可能并不在第1个单元格,而我们可能会要获得行中第一个非空单元格中的数据,如下图1所示。...图1 可以使用INDEX函数/MATCH函数的组合来解决这个问题,如果找不到的话,再加上IFERROR函数来进行错误处理。...在单元格H4中输入公式: =IFERROR(INDEX(C4:G4,0,MATCH("*",C4:G4,0)),"空") 然后向下拖拉复制公式至数据单元格末尾。...公式中,使用通配符“*”来匹配第一个找到的文本,第二个参数C4:G4指定查找的单元格区域,第三个参数零(0)表示精确匹配。 最后,IFERROR函数在找不到单元格时,指定返回的值。...这里没有使用很复杂的公式,也没有使用数组公式,只是使用了常用的INDEX函数和MATCH函数组合来解决。公式很简单,只是要想到使用通配符(“*”)来匹配文本。

    4.6K40

    针对SAS用户:Python数据分析库pandas

    Pandas使用两种设计来表示缺失数据,NaN(非数值)和Python None对象。 下面的单元格使用Python None对象代表数组中的缺失值。相应地,Python推断出数组的数据类型是对象。...解决缺失数据分析的典型SAS编程方法是,编写一个程序使用计数器变量遍历所有列,并使用IF/THEN测试缺失值。 这可以沿着下面的输出单元格中的示例行。...通过将.sum()方法链接到.isnull()方法,它会生成每个列的缺失值的计数。 ? 为了识别缺失值,下面的SAS示例使用PROC格式来填充缺失和非缺失值。...显然,这会丢弃大量的“好”数据。thresh参数允许您指定要为行或列保留的最小非空值。在这种情况下,行"d"被删除,因为它只包含3个非空值。 ? ? 可以插入或替换缺失值,而不是删除行和列。....正如你可以从上面的单元格中的示例看到的,.fillna()函数应用于所有的DataFrame单元格。我们可能不希望将df["col2"]中的缺失值值替换为零,因为它们是字符串。

    12.1K20

    对比Excel,一文掌握Pandas表格条件格式(可视化)

    所以,今天咱们隆重介绍一下Excel条件格式与Pandas的表格可视化,走起! 目录: 1. 概述 2. 突出显示单元格 2.1. 高亮缺失值 2.2. 高亮最大值 2.3. 高亮最小值 2.4....突出显示单元格 在Excel条件格式中,突出显示单元格规则提供的是大于、小于、等于以及重复值等内置样式,不过在Pandas中这些需要通过函数方法来实现,我们放在后续介绍。...这里介绍Pandas突出显示缺失值、最大值、最小值、区间值的函数方法以及Excel实现这些操作的自定义操作。 2.1....CSS属性,案例中我们将待高亮的部分显示为字体颜色-白色,背景色-紫色 金牌数区间[20, 30]、银牌数区间[10, 20]、铜牌数区间[5, 10] 2.5....背景渐变色 在Excel中,直接通过条件格式->色阶 操作即可选择想要的背景渐变色效果 而在Pandas中,我们可以通过df.style.background_gradient()进行背景渐变色的设置

    5.1K20

    利用Pandas库实现Excel条件格式自动化

    今天给大家隆重介绍一下如何利用Pandas实现Excel条件格式的自动化内容。 目录: 1. 概述 2. 突出显示单元格 2.1. 高亮缺失值 2.2. 高亮最大值 2.3. 高亮最小值 2.4....突出显示单元格 在Excel条件格式中,突出显示单元格规则提供的是大于、小于、等于以及重复值等内置样式,不过在Pandas中这些需要通过函数方法来实现,我们放在后续介绍。...这里介绍Pandas突出显示缺失值、最大值、最小值、区间值的函数方法以及Excel实现这些操作的自定义操作。 2.1....CSS属性,案例中我们将待高亮的部分显示为字体颜色-白色,背景色-紫色 金牌数区间[20, 30]、银牌数区间[10, 20]、铜牌数区间[5, 10] 2.5....背景渐变色 在Excel中,直接通过条件格式->色阶 操作即可选择想要的背景渐变色效果 而在Pandas中,我们可以通过df.style.background_gradient()进行背景渐变色的设置

    6.3K41

    Pandas profiling 生成报告并部署的一站式解决方案

    该Overview包括总体统计的。这包括变量数(数据框的特征或列)、观察数(数据框的行)、缺失单元格、缺失单元格百分比、重复行、重复行百分比和内存中的总大小。...字符串变量 对于字符串类型变量,您将获得不同(唯一)值、不同百分比、缺失、缺失百分比、内存大小以及所有具有计数表示的唯一值的水平条表示。...还可以单击切换按钮以获取有关各种相关系数的详细信息。 4. 缺失值 生成的报告还包含数据集中缺失值的可视化。您将获得 3 种类型的图:计数、矩阵和树状图。...计数图是一个基本的条形图,以 x 轴作为列名,条形的长度代表存在的值的数量(没有空值)。类似的还有矩阵和树状图。 5. 样本 此部分显示数据集的前 10 行和最后 10 行。 如何保存报告?...但是还有一些其他方法可以使你的报告脱颖而出。 Jupyter 笔记本中的小部件 在你的 Jupyter 笔记本中运行panda profiling时,你将仅在代码单元格中呈现 HTML。

    3.3K10

    羡慕 Excel 的高级选择与文本框颜色呈现?Pandas 也可以拥有!! ⛵

    内容覆盖 图片 本篇后续内容覆盖以下高级功能: 突出缺失值 突出显示每行/列中的最大值(或最小值) 突出显示范围内的值 绘制柱内条形图 使用颜色渐变突出显示值 组合显示设置功能 注意:强烈建议大家使用最新版本的...① 突出缺失值 在 Pandas Dataframe 中,我们可以使用 dataframe.style.highlight_null() 为空值着色。...那如果我们想显示的是每一行的最大值呢?...=1) 图片 注意:同样可以使用方法 dataframe.style.highlight_min() 使用适当的参数为行/列中的最小值着色。...如下图所示,在图像中,随着值的增加,颜色会从红色变为绿色。你可以设置 subset=None 将这个显示效果应用于整个Dataframe。

    2.8K31

    Python进阶之Pandas入门(四) 数据清理

    处理空值有两种选择: 去掉带有空值的行或列 用非空值替换空值,这种技术称为imputation 让我们计算数据集的每一列的空值总数。...第一步是检查我们的DataFrame中的哪些单元格是空的: print (movies_df.isnull()) 运行结果: ?...删除空值非常简单: movies_df.dropna() 这个操作将删除至少有一个空值的任何行,但是它将返回一个新的DataFrame,而不改变原来的数据。...因此,对于我们的数据集,这个操作将 删除128行,其中revenue_millions为空; 删除64行,其中metascore为空。...可能会有这样的情况,删除每一行的空值会从数据集中删除太大的数据块,所以我们可以用另一个值来代替这个空值,通常是该列的平均值或中值。 让我们看看在revenue_millions列中输入缺失的值。

    1.8K60

    Python—关于Pandas的缺失值问题(国内唯一)

    稍后我们将使用它来重命名一些缺失的值。 导入库后,我们将csv文件读取到Pandas数据框中。 使用该方法,我们可以轻松看到前几行。...这些是Pandas可以检测到的缺失值。 回到我们的原始数据集,让我们看一下“ ST_NUM”列。 ? 第三列中有一个空单元格。在第七行中,有一个“ NA”值。 显然,这些都是缺失值。...使用该方法,我们可以确认缺失值和“ NA”都被识别为缺失值。两个布尔响应均为。isnull() 和True 这是一个简单的示例,但强调了一个重点。Pandas会将空单元格和“NA”类型都识别为缺失值。...在此列中,有四个缺失值。 n/a NA — na 从上面中,我们知道Pandas会将“ NA”识别为缺失值,但其他的情况呢?让我们来看看。...从前面的示例中,我们知道Pandas将检测到第7行中的空单元格为缺失值。让我们用一些代码进行确认。

    3.2K40

    Python替代Excel Vba系列(三):pandas处理不规范数据

    如下图: 其中表格中的第3行是班级。诸如"一1",表示是一年级1班,最多8个年级。 表格中的1至3列,分别表示"星期"、"上下午"、"第几节课"。 前2列有大量的合并单元格,并且数据量不一致。....replace(['/','nan'],np.nan),把读取进来的有些无效值替换为 nan,这是为了后续操作方便。...此外 pandas 中有各种内置的填充方式。 ffill 表示用上一个有效值填充。 合并单元格很多时候就是第一个有值,其他为空,ffill 填充方式刚好适合这样的情况。...如下是一个 DataFrame 的组成部分: 红框中的是 DataFrame 的值部分(values) 上方深蓝色框中是 DataFrame 的列索引(columns),注意,为什么方框不是一行?...pandas 中通过 stack 方法,可以把需要的列索引转成行索引。 用上面的数据作为例子,我们需要左边的行索引显示每天上下午的气温和降雨量。

    5K30

    快乐学习Pandas入门篇:Pandas基础

    索引对齐特性 这是Pandas中非常强大的特性,在对多个DataFrame 进行合并或者加减乘除操作时,行和列的索引都重叠的时候才能进行相应操作,否则会使用NA值进行填充。...count返回非缺失值元素个数;value_counts返回每个元素有多少个值,也是作用在具体某列上 df['Physics'].count()df['Physics'].value_counts()...4. describe & info info() 函数返回有哪些列、有多少非缺失值、每列的类型;describe() 默认统计数值型数据的各个统计量,可以自行选择分位数位置。...对于Series,它可以迭代每一列的值(行)操作;对于DataFrame,它可以迭代每一个列操作。 # 遍历Math列中的所有值,添加!...练习 练习1: 现有一份关于美剧《权力的游戏》剧本的数据集,请解决以下问题: (a)在所有的数据中,一共出现了多少人物? (b)以单元格计数(即简单把一个单元格视作一句),谁说了最多的话?

    2.4K30

    《Python for Excel》读书笔记连载12:使用pandas进行数据分析之理解数据

    引言:本文为《Python for Excel》中第5章Chapter 5:Data Analysis with pandas的部分内容,主要讲解了pandas如何对数据进行描述性统计,并讲解了将数据聚合到子集的两种方法...默认情况下,它们返回沿轴axis=0的系列,这意味着可以获得列的统计信息: 如果需要每行的统计信息,使用axis参数: 默认情况下,缺失值不包括在描述性统计信息(如sum或mean)中,这与Excel...处理空单元格的方式一致,因此在包含空单元格的区域内使用Excel的AVERAGE公式将获得与应用于具有相同数字和NaN值(而不是空单元格)的系列的mean方法相同的结果。...为此,首先按洲对行进行分组,然后应用mean方法,该方法将计算每组的均值,自动排除所有非数字列: 如果包含多个列,则生成的数据框架将具有层次索引,即我们前面遇到的多重索引: 可以使用pandas提供的大多数描述性统计信息...这使得跨感兴趣的维度读取摘要信息变得容易。在我们的数据透视表中,会立即看到,在北部地区没有苹果销售,而在南部地区,大部分收入来自橙子。如果要反过来将列标题转换为单个列的值,使用melt。

    4.3K30

    pandas参数设置小技巧

    在日常使用pandas的过程中,由于我们所分析的数据表规模、格式上的差异,使得同样的函数或方法作用在不同数据上的效果存在差异。   ...图1 1 设置DataFrame最大显示行数 pandas设置参数中的display.max_rows用于控制打印出的数据框的最大显示行数,我们使用pd.set_option()来有针对的设置参数,如下面的例子...图4 4 指定小于某个数的元素显示为0   通过display.chop_threshold参数我们在不修改原始数据的情况下,指定数据框中绝对值小于阈值的数显示为0: ?...图6 6 设置info()方法中非缺失值检查的行数上限   针对数据框的info()方法可以帮助我们查看数据框的一些概览信息,譬如每一列对应的非缺失值个数。   ...但默认情况下当数据框行数大于1690784行时,再查看info()信息,会处于计算效率的考虑略去缺失值检查信息。

    1.2K20

    pandas参数设置小技巧

    Python大数据分析 在日常使用pandas的过程中,由于我们所分析的数据表规模、格式上的差异,使得同样的函数或方法作用在不同数据上的效果存在差异。...图1 1 设置DataFrame最大显示行数 pandas设置参数中的display.max_rows用于控制打印出的数据框的最大显示行数,我们使用pd.set_option()来有针对的设置参数,如下面的例子...参数我们可以设置浮点数的显示格式,譬如这里我们给浮点数加上¥前缀并设定保留两位小数: 图6 6 设置info()方法中非缺失值检查的行数上限 针对数据框的info()方法可以帮助我们查看数据框的一些概览信息...,譬如每一列对应的非缺失值个数。...但默认情况下当数据框行数大于1690784行时,再查看info()信息,会处于计算效率的考虑略去缺失值检查信息。

    1.1K10

    【Python】数据评估

    结构方面需要清理的数据叫做乱数据,结构方面不需要清理的数据叫做整洁数据。 2. 整洁数据有以下特点:(列是属性,行是示例) 每列是一个变量。 每行是一个观察值。 每个单元格是一个元素值。...DataFrame.info()方法可以提供数据的概况信息,包括行(列)的数量、列名、列对应的数据类型 、非空缺值的数量,从宏观上进行评估。 2....DataFrame.info()方法得到的非空缺值的数量与行数进行对比,可以得到该列空缺值的数量,从空缺值上进行评估。 5....对于DataFrame对象,可以使用print(DataFrame[DataFrame[列名].isnull()])来找到某一列存在缺失值的行。 9....如果缺失值较多,那么可以使用fillna()方法,会把缺失值替换成传入的参数;当往fillna()中传入的是字典时,可以同时替换不同列的缺失值。 3.

    7600
    领券