首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

如何在交叉验证中使用SHAP?

在许多情况下,机器学习模型比传统线性模型更受欢迎,因为它们具有更好的预测性能和处理复杂非线性数据的能力。然而,机器学习模型的一个常见问题是它们缺乏可解释性。例如,集成方法如XGBoost和随机森林将许多个体学习器的结果组合起来生成结果。尽管这通常会带来更好的性能,但它使得难以知道数据集中每个特征对输出的贡献。为了解决这个问题,可解释人工智能(explainable AI, xAI)被提出并越来越受欢迎。xAI领域旨在解释这些不可解释的模型(所谓的黑匣子模型)如何进行预测,实现最佳的预测准确性和可解释性。这样做的动机在于,许多机器学习的真实应用场景不仅需要良好的预测性能,还要解释生成结果的方式。例如,在医疗领域,可能会根据模型做出的决策而失去或挽救生命,因此了解决策的驱动因素非常重要。此外,能够识别重要变量对于识别机制或治疗途径也很有帮助。最受欢迎、最有效的xAI技术之一是SHAP。

01

【SLAM】开源 | VO基于几何的方法和深入学习的单目视觉里程计算法,性能SOTA

在这项工作中,本文提出了一个基于几何的方法和深入学习的单目视觉里程计(VO)算法。大多数现有的优异性能的VO/SLAM系统都基于几何学特征的算法,必须针对不同的应用场景进行精心设计才能达到较好的效果。此外,大多数单目系统都存在尺度漂移问题。最近的一些深度学习工作以端到端的方式实现VO功能,但是这些深度系统的性能仍然无法与基于几何的方法相比。在这项工作中,我们回顾了VO的基础知识,并探索了如何将深度学习与极线几何和透视投影(PnP)方法相结合。具体地说,我们训练了两个卷积神经网络(CNNs)来估计单目深度和并且输出双目视觉中的光流特征。在深度预测的基础上,我们设计了一种简单而稳健的帧到帧VO算法(DF-VO),其性能优于纯深度学习和基于几何的方法。更重要的是,我们的尺度一致的单视角深度CNN系统不受尺度漂移问题的影响。在KITTI数据集上的大量实验表明了系统的鲁棒性,详细的研究表明了系统中不同因素的影响。

02
领券