首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Spark 之旅:大数据产品的一种测试方法与实现

pyspark.sql import SQLContext\n" +"\n" +"\n" +"def run(t1, t2, context_string):\n" +" # t2为原始数据, t1为经过数据拆分算子根据字段分层拆分后的数据...\n" +" # 由于数据拆分是根据col_20这一列进行的分层拆分, 所以在这里分别\n" +" # 对这2份数据进行分组并统计每一个分组的计数。...里面t1和t2都是dataframe, 分别代表原始数据和经过数据拆分算法拆分后的数据。 测试的功能是分层拆分。 也就是按某一列按比例抽取数据。...比如说100W行的数据,我按job这个字段分层拆分, 我要求的比例是30%。 也即是说每种职业抽取30%的数据出来,相当于这是一个数据采样的功能。...OK, 所以在测试脚本中,我们分别先把原始表和经过采样的表按这一列进行分组操作, 也就是groupby(col_20)。 这里我选择的是按col_20进行分层拆分。

1.3K10

数据导入与预处理-第6章-03数据规约

3.1.2 数量规约概述 数量规约是指用较小规模的数据替换或估计原数据,主要包括 回归与线性对数模型 直方图 聚类 采样 数据立方体 这几种方法,其中直方图是一种流行的数据规约方法。...3.1.3 数据压缩 数据压缩是利用编码或转换将原有数据集压缩为一个较小规模的数据集。 无损压缩:若原有数据集能够从压缩后的数据集中重构,且不损失任何信息,则该数据压缩是无损压缩。...3.2 重塑分层索引(6.3.2 ) 3.2.1 重塑分层索引介绍 重塑分层索引是pandas中简单的维度规约操作,该操作主要会将DataFrame类对象的列索引转换为行索引,生成一个具有分层索引的结果对象...: 执行unstack时也可以指定层次 # 由于stack和unstack默认是操作最里层的数据,当我们想操作外层的数据时,就要传入一个层级序号或名称来拆分一个不同的层级。...) 3.3.1 降采样介绍 降采样是一种简单的数据规约操作,它主要是将高频率采集数据规约到低频率采集数据,比如,从每日采集一次数据降低到每月采集一次数据,会增大采样的时间粒度,且在一定程度上减少了数据量

1.5K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    spark 数据处理 -- 数据采样【随机抽样、分层抽样、权重抽样】

    分层采样 分层抽样法也叫类型抽样法。它是从一个可以分成不同子总体(或称为层)的总体中,按规定的比例从不同层中随机抽取样品(个体)的方法。这种方法的优点是,样本的代表性比较好,抽样误差比较小。...定量调查中的分层抽样是一种卓越的概率抽样方式,在调查中经常被使用。 选择分层键列,假设分层键列为性别,其中男性与女性的比例为6:4,那么采样结果的样本比例也为6:4。...n 个元素,每个元素有不同的权重,现在要不放回地随机抽取 m 个元素,每个元素被抽中的概率为元素的权重占总权重的比例。...针对类别不平衡的数据集,通过设定标签列、过采样标签和过采样率,使用SMOTE算法对设置的过采样标签类别的数据进行过采样输出过采样后的数据集 SMOTE算法使用插值的方法来为选择的少数类生成新的样本 欠采样..._jdf.sample(*args) return DataFrame(jdf, self.sql_ctx) 根据每个层上给定的分数返回分层样本,不进行替换。

    6.4K10

    图解机器学习中的 12 种交叉验证技术

    交叉验证器 01 K折交叉验证--没有打乱 折交叉验证器 KFold,提供训练/验证索引以拆分训练/验证集中的数据。将数据集拆分为 个连续的折叠(默认情况下不改组)。...然后将每个折叠用作一次验证,而剩余的 个折叠形成训练集。...这里需要注意的是,该交叉验证的拆分数据方法是一致的,仅仅是在拆分前,先打乱数据的排列,再进行分层 折交叉验证。...08 分组K折交叉验证--留N组 LeavePGroupsOut将 P 组留在交叉验证器之外,例如,组可以是样本收集的年份,因此允许针对基于时间的拆分进行交叉验证。...将embargo设置为大于0的值,将在验证集之后删除额外的样本。

    2.8K20

    pandas用法-全网最详细教程

    如果为 True,则不要串联轴上使用的索引值。由此产生的轴将标记 0,…,n-1。这是有用的如果你串联串联轴没有有意义的索引信息的对象。请注意在联接中仍然受到尊重的其他轴上的索引值。...具体的指标,用于其他 n-1 轴而不是执行内部/外部设置逻辑。 keys︰ 序列,默认为无。构建分层索引使用通过的键作为最外面的级别。如果多个级别获得通过,应包含元组。...、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和。...八、数据统计 数据采样,计算标准差,协方差和相关系数 1、简单的数据采样 df_inner.sample(n=3) 2、手动设置采样权重 weights = [0, 0, 0, 0, 0.5, 0.5...] df_inner.sample(n=2, weights=weights) 3、采样后不放回 df_inner.sample(n=6, replace=False) 4、采样后放回 df_inner.sample

    7.3K31

    Python:数据抽样平衡方法重写

    = "under", N = 40, seed = 1)$data table(data_balanced_under$cls) 0 1 20 20 这边需要注意的是欠采样是不放回采样,同时对数据信息的损失也是极大的...---- ---- 在python上,我也没有发现有现成的package可以import,所以就参考了R的实现逻辑重写了一遍,新增了一个分层抽样group_sample,删除了过采样,重写了组合抽样combine_sample...# data_set:数据集 # label:分层变量 # percent:抽样占比 # q:每次抽取是否随机,null为随机...# 抽样根据目标列分层,自动将样本数较多的样本分层按percent抽样,得到目标列样本较多的特征欠抽样数据 x = data_set y = label...里面的label保持正样本(少类样本)达到0.4的占比下,总数抽取到60000个样本 其实不是很难的一个过程,只是强化自己对python及R语言的书写方式的记忆,谢谢。

    1.4K30

    机器学习算法:随机森林

    与行不同,随机森林的列是在没有替换的情况下进行采样的,这意味着我们不会有重复的列来训练 1 棵树。有很多方法可以对特征进行采样。您可以指定要采样的固定最大特征数,取特征总数的平方根,或尝试使用日志。...这些方法中的每一种都有权衡取舍,并且将取决于您的数据和用例。图片下面的代码片段使用 sqrt 技术对列进行采样,对行进行采样,训练 3 个决策树,并使用多数规则进行预测。...我们首先执行替换采样,他们对列进行采样,训练我们的个体树,让我们的树对我们的测试数据进行预测,然后采用多数规则共识。...在高层次上,该算法试图提出问题以将数据拆分到不同的节点。下图显示了决策树的外观示例。图片决策树根据前一个问题的答案提出一系列问题。对于它提出的每个问题,都可能有多个答案,我们将其可视化为拆分节点。...图片为了计算信息增益,我们执行以下操作:计算父节点的熵将父节点拆分为子节点为每个子节点创建权重。

    51000

    机器学习算法:随机森林

    与行不同,随机森林的列是在没有替换的情况下进行采样的,这意味着我们不会有重复的列来训练 1 棵树。 有很多方法可以对特征进行采样。您可以指定要采样的固定最大特征数,取特征总数的平方根,或尝试使用日志。...这些方法中的每一种都有权衡取舍,并且将取决于您的数据和用例。 下面的代码片段使用 sqrt 技术对列进行采样,对行进行采样,训练 3 个决策树,并使用多数规则进行预测。...我们首先执行替换采样,他们对列进行采样,训练我们的个体树,让我们的树对我们的测试数据进行预测,然后采用多数规则共识。...在高层次上,该算法试图提出问题以将数据拆分到不同的节点。下图显示了决策树的外观示例。 决策树根据前一个问题的答案提出一系列问题。对于它提出的每个问题,都可能有多个答案,我们将其可视化为拆分节点。...为了计算信息增益,我们执行以下操作: 计算父节点的熵 将父节点拆分为子节点 为每个子节点创建权重。

    45950

    使用重采样评估Python中机器学习算法的性能

    评估算法性能的最好方法是对已经知道答案的新数据进行预测。第二个最好的方法是使用来自统计学的聪明技术,称为重采样方法,使您可以准确估计算法在新数据上的表现。...这是一个二元分类问题,其中所有的输入变量都是数字的。在每个配方中,直接从UCI Machine Learning存储库下载。您可以根据需要将其替换为您自己的数据集。...K-fold交叉验证 交叉验证是一种方法,您可以使用这种方法来估计具有较少方差的机器学习算法的性能,而不是单个列车测试集拆分。 它通过将数据集分成k个部分(例如k = 5或k = 10)来工作。...不利的一面是,重复可能包括列车中的大部分相同的数据,或者从运行到运行的测试分离,将冗余引入到评估中。 下面的例子将数据拆分成67%/ 33%的列车/测试拆分,并重复该过程10次。...概要 在这篇文章中,您发现了可以用来估计机器学习算法性能的统计技术,称为重采样。 具体来说,你了解了: 训练和测试集。 交叉验证。 留下一个交叉验证。 重复的随机测试列车拆分。

    3.4K121

    从Excel到Python:最常用的36个Pandas函数

    2.清理空格 字符中的空格也是数据清洗中一个常见的问题 #清除city字段中的字符空格 df['city']=df['city'].map(str.strip) 3.大小写转换 在英文字段中,字母的大小写不统一也是一个常见的问题...使用merge函数对两个数据表进行合并,合并的方式为inner,将 两个数据表中共有的数据匹配到一起生成新的数据表。并命名为 df_inner。...在Python中使用split函数实现分列在数据表中category列中的数据包含有两个信息,前面的数字为类别id,后面的字母为size值。中间以连字符进行连接。...我们使用split函数对这个字段进行拆分,并将拆分后的数据表匹配回原数据表中。...Sample函数中参数replace,用来设置采样后是否放回 #采样后不放回 df_inner.sample(n=6, replace=False) #采样后放回 df_inner.sample(n=6

    11.5K31

    Pandas 2.2 中文官方教程和指南(二十五·二)

    时间间隔滚动均值 分割 拆分框架 创建一个数据框列表,根据包含在行中的逻辑进行分割。...向量化查找 聚合和绘图时间序列 将一个以小时为列、天为行的矩阵转换为连续的行序列,形成时间序列。...和另一个分组来创建子组,然后应用自定义函数 GH 3791 使用自定义周期进行重采样 在不添加新日期的情况下重采样日内框架 重采样分钟数据 与 groupby 一起重采样 ### 重采样 重采样 文档...和另一个分组来创建子组,然后应用自定义函数 GH 3791 使用自定义周期进行重采样 在不添加新日期的情况下重采样日内框架 重采样分钟数据 与 groupby 一起重采样 合并 连接 文档。...看这里 从文件推断数据类型 处理错误行 GH 2886 写入多行索引 CSV 而不写入重复项 读取多个文件以创建单个 DataFrame 将多个文件合并为单个 DataFrame 的最佳方法是逐个读取各个框架

    17600

    python数据分析——数据分类汇总与统计

    第一个阶段,pandas对象中的数据会根据你所提供的一个或多个键被拆分(split)为多组。拆分操作是在对象的特定轴上执行的。...例如, DataFrame可以在其行(axis=0)或列(axis=1)上进行分组。然后,将一个函数应用(apply)到各个分组并产生一个新值。...) 对于DataFrame,你可以定义一组应用于全部列的一组函数,或不列应用不同的函数。.../01/10,默认采集时间以“天”为单位,请利用Python对数据进行以“周”为单位的采样 【例22】对于上面股票数据集文件stockdata.csv,请利用Python对数据进行以“月”为单位的采样...关键技术:可以通过resample()函数对数据进行采样,并设置参数为’M’,表示以“月”为单位的采样。

    82910

    8种交叉验证类型的深入解释和可视化介绍

    对于具有n行的数据集,选择第1行进行验证,其余(n-1)行用于训练模型。对于下一个迭代,选择第2行进行验证,然后重置来训练模型。类似地,这个过程重复进行,直到n步或达到所需的操作次数。...从k折或组中,对于每次迭代,选择一组作为验证数据,其余(k-1)个组选择为训练数据。 该过程重复k次,直到将每个组视为验证并保留为训练数据为止。...数据集的k倍交叉验证不太可能分成几类,而不是成组或成对,而是在这种情况下随机地成组。 迭代次数不是固定的,而是由分析决定的。然后将结果平均化。...重复随机二次抽样验证 优点:训练和验证拆分的比例不取决于迭代或分区的数量 缺点:某些样本可能无法选择用于训练或验证、不适合不平衡数据集 6....对于与时间相关的数据集,将数据随机拆分或k折拆分为训练和验证可能不会产生良好的结果。 对于时间序列数据集,根据时间将数据分为训练和验证,也称为前向链接方法或滚动交叉验证。

    2.2K10

    python数据分析——数据分类汇总与统计

    第一个阶段,pandas对象中的数据会根据你所提供的一个或多个键被拆分(split)为多组。拆分操作是在对象的特定轴上执行的。...例如, DataFrame可以在其行(axis=0)或列(axis=1)上进行分组。然后,将一个函数应用(apply)到各个分组并产生一个新值。...) 对于DataFrame,你可以定义一组应用于全部列的一组函数,或不列应用不同的函数。...Pandas是一个强大的数据分析工具,而pivot()函数是Pandas中的一个重要函数,用于数据透视操作。它可以根据某些列的值将数据重塑为新的形式,使之更易于分析和理解。...关键技术:可以通过resample()函数对数据进行采样,并设置参数为’M’,表示以“月”为单位的采样。

    11710

    用Python玩转统计数据:取样、计算相关性、拆分训练模型和测试

    最后,你会学习给样本分层,并将数据集拆分成测试集与训练集。...要留意的是,.skew(...)和.kurt(...)方法以类似的格式返回数据,而.mode(...)不然;.mode(...)方法返回的数据要进行调整,以便和.describe()方法的输出格式保持一致...我们还使用了DataFrame的.append(...)方法:有一个DataFrame对象(例子中的sample),将另一个DataFrame附加到这一个已有的记录后面。...sample(n=np.round(strata_expected_counts[bed])), ignore_index=True ) 04 将数据集拆分成训练集、交叉验证集和测试集 要建立一个可信的统计模型...接着我们将这些数字与要归到训练集的比例(1-test_size)进行比较:如果数字小于比例,我们就将记录放在训练集(train属性的值为True)中;否则就放到测试集中(train属性的值为False)

    2.4K20

    Pandas 2.2 中文官方教程和指南(二十五·一)

    使用 Grouper 而不是 TimeGrouper 进行时间分组 带有一些缺失值的时间分组 Grouper 的有效频率参数 时间序列 使用 MultiIndex 进行分组 使用 TimeGrouper...和另一个分组创建子组,然后应用自定义函数 GH 3791 使用自定义周期重新采样 重新采样日内框架而不添加新天数 重新采样分钟数据 使用 groupby 重新采样 ## 合并 连接 文档。...Jupyter 笔记本中绘制多个图表 创建多行图 绘制热力图 注释时间序列图 注释时间序列图 #2 使用 Pandas、Vincent 和 xlsxwriter 在 Excel 文件中生成嵌入式图表 为分层变量的每个四分位数绘制箱线图...点击这里查看 从文件推断数据类型 处理坏行 GH 2886 在不写入重复数据的情况下编写多行索引 CSV 读取多个文件以创建单个 DataFrame 将多个文件合并为单个 DataFrame 的最佳方法是逐个读取各个框架...在这里,我们为DataFrame对象计算距离相关性矩阵。

    44800

    每个数据科学家都需要知道的5种采样算法

    算法是数据科学的核心,而采样是决定项目成败的关键技术。了解有关使用的最常见采样技术的更多信息,因此您可以在处理数据时选择最佳方法。 数据科学是对算法的研究。...现在让我们看看选择第一项的可能性: 删除第一项的概率是元素3被选择的概率乘以元素1从储层中的2个元素中随机选择作为替换候选者的概率。...因此,每个项目都具有相同的被选择概率:2/3或通常为 k / n。 随机欠采样和过采样 ? 我们经常遇到不平衡的数据集。 处理高度不平衡的数据集的一种广泛采用的技术称为重采样。..., n_samples=100, random_state=10 )X = pd.DataFrame(X) X['target'] = y 我们现在可以使用以下方法进行随机过采样和欠采样: num_0...它提供了多种方法来进行欠采样和过采样。 a.使用Tomek链接进行欠采样: 它提供的一种这样的方法称为Tomek Links。Tomek链接是成对的相近类别的对示例。

    71020

    算法研习:机器学习中的K-Fold交叉验证

    也是一种用于评估有限数据样本的机器学习模型的重采样方法。该方法简单且易于理解。K-Fold将将数据集拆分为k个部分。...将数据集拆分为k个组 对于每个组:将该组作为测试集 将剩余的组作为训练集 在训练集上拟合模型并在测试集上进行评估 保留该模型的评估分数 使用模型评估分数样本评价模型的性能 ?...K-Fold的类型 分层K-Fold: 分层K-Fold是KFold的变体。首先,分层K-Fold将数据分组,然后将数据分成n_splits部分和Done。现在,它将使用每个部分作为测试集。...例如,n_splits = 4,我们的数据y(因变量)有3个类(标签)。4个测试集既能够覆盖所有数据,没有任何重叠。 ? 分层洗牌K折叠: 分层洗牌分割是ShuffleSplit的变种。...首先,StratifiedShuffleSplit对我们的数据进行洗牌,然后它还将数据拆分为n_splits部分。在此步骤之后,StratifiedShuffleSplit选择一个部分作为测试集。

    2.4K10

    50个Pandas的奇淫技巧:向量化字符串,玩转文本处理

    要拆分的字符串或正则表达式。如果未指定,则在空格处拆分。 n:int,默认 -1(全部)。限制输出中的拆分数量, None , 0 和 -1 将被解释为返回所有拆分。...将拆分的字符串展开为单独的列。 如果 True ,返回 DataFrame/MultiIndex 扩展维度。 如果 False ,则返回包含字符串列表的系列/索引。 regex:布尔值,默认无。...如果 pat 是已编译的正则表达式,则不能设置为 False 注 意:n 关键字的处理取决于找到的拆分数量: 如果发现拆分 > n ,请先进行 n 拆分 如果发现拆分 n ,则进行所有拆分 如果对于某一行...将拆分的字符串展开为单独的列。 如果 True ,返回 DataFrame/MultiIndex 扩展维度。 如果 False ,则返回包含字符串列表的系列/索引。...确定替换是否区分大小写: 如果为 True,则区分大小写(如果 pat 是字符串,则默认为) 设置为 False 不区分大小写 如果 pat 是已编译的正则表达式,则无法设置。

    6K60
    领券