YOLOv5现在正式支持11种不同的权重,不仅可以直接导出,还可以用于推理(detect.py和PyTorch Hub),以及在导出后对mAP配置文件和速度结果进行验证。...比如,onnx文件的导出:
onnx导出
1重大更新
TensorRT支持:TensorFlow, Keras, TFLite, TF.js模型导出现在完全集成使用python export.py -...include saved_model pb TFLite tfjs
TensorFlow Edge TPU:新的更小的YOLOv5n(1.9M params)模型低于YOLOv5s(7.5M params...Export Benchmarks:使用python utils/ Benchmark.py导出所有YOLOv5格式(mAP和速度)。目前在CPU上运行,未来的更新将实现GPU支持。
架构:无更改。...新版模型导出
1、onnx
def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX