ClickHouse 中的分区、索引、标记和压缩数据的协同工作引言ClickHouse是一个快速、可扩展的开源列式数据库管理系统,它被广泛应用于大数据分析和实时查询场景。...在处理海量数据时,合理地利用分区、索引、标记和压缩等技术,能够提高查询性能和降低存储成本。本文将介绍ClickHouse中这些技术是如何协同工作的。...灵活过滤数据:通过标记,可以根据不同的需求将数据按照不同的标准进行过滤,提高灵活性和适用性。压缩数据(Data Compression)数据压缩是ClickHouse中存储优化的关键技术之一。...总结在ClickHouse中,分区、索引、标记和数据压缩等技术密切协同工作,共同提升了查询性能和存储效率。...ClickHouse是一个快速、开源的列式数据库管理系统,专为大数据场景设计。ClickHouse的分区功能可以根据表中的一列或多列的值将数据划分为不同的分区,从而更高效地处理和查询大数据量。
在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...这有时称为链式索引。记住这种表示法的一个更简单的方法是:df[列名]提供一列,然后添加另一个[行索引]将提供该列中的特定项。 假设我们想获取第2行Mary Jane所在的城市。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?
Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...ignore_index参数设置为 True 以在追加行后重置数据帧的索引。 然后,我们将 2 列 [“薪水”、“城市”] 附加到数据帧。“薪水”列值作为系列传递。序列的索引设置为数据帧的索引。...然后,我们在数据帧后附加了 2 列 [“罢工率”、“平均值”]。 “罢工率”列的列值作为系列传递。“平均值”列的列值作为列表传递。列表的索引是列表的默认索引。
pandas.core.frame.DataFrame; 生成一个随机数数组; 将这个随机数数组与 DataFrame 中的数据列合并成一个新的 NumPy 数组。...首先定义了一个字典 data,其中键为 “label”,值为一个列表 [1, 2, 3, 4]。然后使用 pd.DataFrame (data) 将这个字典转换成了 DataFrame df。...在这个 DataFrame 中,“label” 作为列名,列表中的元素作为数据填充到这一列中。...结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。
/前言/ 前几天群里有个小伙伴问了一个问题,关于Python读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值,大家讨论的甚为激烈,在此总结了两个方法,希望后面有遇到该问题的小伙伴可以少走弯路...2、现在我们想对第一列或者第二列等数据进行操作,以最大值和最小值的求取为例,这里以第一列为目标数据,来进行求值。 ?...通常我们通过Python来处理数据,用的比较多的两个库就是numpy和pandas,在本篇文章中,将分别利用两个库来进行操作。...3、其中使用pandas库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ? 4、通过pandas库求取的结果如下图所示。 ?...通过该方法,便可以快速的取到文件夹下所有文件的第一列的最大值和最小值。 5、下面使用numpy库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ?
在MySQL中,我们经常需要操作数据库中的数据。有时我们需要获取表中的倒数第二个记录。这个需求看似简单,但是如果不知道正确的SQL查询语句,可能会浪费很多时间。...在本篇文章中,我们将探讨如何使用MySQL查询获取表中的倒数第二个记录。 一、查询倒数第二个记录 MySQL中有多种方式来查询倒数第二个记录,下面我们将介绍三种使用最广泛的方法。...1.1、使用排名 我们可以使用排名的方式,将最后一条记录排除在外,然后返回排名为第二的记录。...----+-----+ | id | name | age | +----+------+-----+ | 4 | Lily | 24 | +----+------+-----+ 三、查询某个字段为最大值的整条数据...使用排名,子查询和嵌套查询三者之一,可以轻松实现这个功能。使用哪种方法将取决于你的具体需求和表的大小。在实际应用中,应该根据实际情况选择最合适的方法以达到最佳性能。
它主要用于有损(视频)图像压缩系统。 引言 让我们回顾一下使用 H.265/HEVC 系统编码时处理视频帧的主要步骤(图 1)。第一步通常称为 "块划分",将帧划分为称为 CU(编码单元)的块。...图 1.H.265/HEVC 系统中视频帧编码的主要阶段 然后对残差信号的频谱傅里叶系数进行逐级量化。最后,将四个阶段中每个阶段所执行的所有操作的数据发送到熵编码器的输入端。...(3)\\\end{array} 是垂直图像协方差,j 和 k 是像素行索引,是水平图像协方差,i 和 l 是像素列索引。...\quad(6)\\\end{array} 因此,卡胡宁-洛埃夫变换可以将数字图像表示为一组不相关的随机变量。但这有什么用呢?这种表示有什么特别之处?K.R. Rao 和 P.C....和 像素值的直方图 卡尔胡宁-洛埃夫变换将向量转化为向量坐标为 图 5 所示向量的散点图(摘自本书)显示向量的坐标之间没有相关性。
元数据。为了避免在查询执行过程中进行不必要的数据访问,PolarDB-IMCI为每个数据包维护一个包元数据。包元数据跟踪每个包的最小和最大值,以及采样直方图,这有益于列扫描。...然后,列索引将行数据写入空槽中(例如,图4中行组N内的数据包)。最后,插入VID记录已插入数据的事务提交序列号(即时间戳)。由于插入VID映射维护每个插入数据的插入版本,因此也遵循只追加的写入模式。...对于各种数据类型,列索引采用不同的压缩算法。数字列采用参考帧、增量编码和位压缩压缩的组合,而字符串列使用字典压缩。...对于各种数据类型,列索引采用不同的压缩算法。数字列采用参考帧、增量编码和位压缩压缩的组合,而字符串列使用字典压缩。...在这种情况下,PolarDB-IMCI删除行组内的插入VID映射,以减少内存占用。 • 紧缩:删除操作可以在数据包中设置删除VID,为该数据包打洞。随着无效行数的增加,扫描性能和空间效率会下降。
GIF 可以被认为是图像数据的一个包装器。它有一个称为 logical screen 的视口,到该视口的单独的图像帧绘制,这有点像 Photoshop 文档中的图层。...在GIF的逻辑屏幕上绘制的每一帧最多只能包含256种颜色。GIF还支持 "索引透明",一个透明的像素将参考色表中一个透明 "颜色 "的索引。...将一个数值范围缩小到一个较小的、近似的输出值集合的做法被称为量化,在学习图像编码时你会经常看到这个术语。这种调色板量化的结果通常很明显。...使用类似于GIF的无损数据压缩和颜色索引的东西,你可以把它描述为: A:#0000ff,B:#ff0000,C:#000085。...当编码为GIF时,像阴影这样的微妙渐变变得斑驳,个别像素与周围环境形成鲜明对比: 实际上,无损压缩和调色板量化的结合意味着GIF在现代Web开发中并不是很有用。
通过图像关键帧运算,使用宏块中已解码的像素来绘制图像中未知部分,从而去除冗余数据,实现更高效的压缩。...A 和列 L 的像素的平均值作为宏块唯一的值来填充宏块; TM_PRED(TrueMotion预测):除了行 A 和列 L 之外,用宏块上方和左侧的像素P、A(从P开始)中像素块之间的水平差异以列 L...最后是将结果量化并进行熵编码。WebP 使用的是布尔算术编码作为熵编码方式,直接把输入的消息编码为一个满足(0.0 ≤ n 的小数n。...预测变换有 13 种不同的模式,使用较多的是左、上、左上以及右上的像素预测模式,其余为左、上、左上和右上组合的平均值预测模式。 颜色变换 借助颜色变换去除每个像素的 R,G 和 B 值。...减去绿色变换 “减去绿色变换”从每个像素的红色、蓝色值中减去绿色值。当此变换存在时,解码器需要将绿色值添加到红色和蓝色。 彩色缓存编码 无损 WebP 压缩使用已经看到的图像片段来重构新的像素。
带有B帧的视频在解码时的逻辑会更复杂些,CPU开销会更大。B帧的大小为P帧的一半左右,在短视频中常用! SI和SP帧:SI和SP帧不常见,用于H.264中切换码流时使用。...2)索引格式中的bit存储的并非是实际的R,G, B值,而是对应点的像素在调色板中的索引 3)调色板,可以简单理解为通过编号映射到颜色的一张二维表。...如01索引,表示红色。采用索引格式的RGB,红色的像素对应存储的值便是索引01。...就像指针一样,存储的是值的地址,而不是真正的值 2、像素格式:RGB像素格式中的bit存储的是每一个像素点的R,G,B。...音视频文件封装 声音与画面在采集、预处理、编码的过程中,都是分开进行处理的,但实际播放的时候,需要将声音和画面同时展示,因而需要将音频和视频编码后的数据打包到一个文件里。
算法的大致思想是将数据中连续重复出现的符号用一个字符和这个字符重复的次数来代替。...首先,算法从未压缩的字符串中选取最小的子字符串,这些子字符串在字典中不存在。 然后,将这个子字符串复制到字典(作为一个新的记录)并为它分配一个索引值。...压缩时,除了最后一个字母之外,其他所有字符被字典中的索引代替。 最后,将索引和最后一个字母插入压缩字符串,比如ABBB,在字典中找到ABB和它的索引4,得到的压缩字符串就是4B。...字典开始为空,之后会逐渐地建立起来,该过程的总体思路是当一个索引号被接收时,在字典中已经存在了与其相应的记录。...但是,为了把0 聚集起来,整个压缩过程以z字形按对角线读取表,而不是按行或列。原因是如果图像没有很好的变化,T表底部的右下角将全为0。
索引 索引就像书本的目录,目录可以快速找到所在页数,数据库中索引可以帮助快速找到数据,而不用全表扫描,合适的索引可以大大提高数据库查询的效率。...普通索引和唯一性索引 普通索引:CREATEINDEXmycolumn_indexONmytable(myclumn) 唯一性索引:保证在索引列中的全部数据是唯一的,对聚簇索引和非聚簇索引都可以使用,语句为...聚簇索引和非聚簇索引 (聚集索引,群集索引) 聚簇索引:物理索引,与基表的物理顺序相同,数据值的顺序总是按照顺序排列,如 CREATE CLUSTERED INDEX mycolumn_cindex ON...并且选择度(一个字段中唯一值的数量 / 总的数量)越大,建索引越有优势 经常同时存取多列,且每列都含有重复值可考虑建立复合索引 使用规则 对于复合索引,把使用最频繁的列做为前导列 (索引中第一个字段)。...如果查询时前导列不在查询条件中则该复合索引不会被使用。
操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...每种方法都将包括说明,可视化,代码以及记住它的技巧。 Pivot 透视表将创建一个新的“透视表”,该透视表将数据中的现有列投影为新表的元素,包括索引,列和值。...初始DataFrame中将成为索引的列,并且这些列显示为唯一值,而这两列的组合将显示为值。这意味着Pivot无法处理重复的值。 ? 旋转名为df 的DataFrame的代码 如下: ?...包含值的列将转换为两列:一列用于变量(值列的名称),另一列用于值(变量中包含的数字)。 ? 结果是ID列的值(a,b,c)和值列(B,C)及其对应值的每种组合,以列表格式组织。...记住:像蜡烛一样融化(Melt)就是将凝固的复合物体变成几个更小的单个元素(蜡滴)。融合二维DataFrame可以解压缩其固化的结构并将其片段记录为列表中的各个条目。
也完全可以将数据帧一起添加。 将数据帧加在一起将在计算之前对齐索引和列,并产生不匹配索引的缺失值。 首先,从 2014 年棒球数据集中选择一些列。...类似地,AB,H和R列是两个数据帧中唯一出现的列。 即使我们在指定fill_value参数的情况下使用add方法,我们仍然缺少值。 这是因为在我们的输入数据中从来没有行和列的某些组合。...原始的第一行数据成为结果序列中的前三个值。 在步骤 2 中重置索引后,pandas 将我们的数据帧的列默认设置为level_0,level_1和0。...默认情况下,merge尝试对齐每个数据帧中具有相同名称的列中的值。 但是,您可以通过将布尔参数left_index和right_index设置为True来选择使其与索引对齐。...itertuples方法循环遍历每个数据帧的行,并以元组的形式返回其值。 我们为绘图解压缩相应的 x 和 y 值,并用我们分配给它的编号标记它。
A2: 我们在ES中支持两种zstd压缩等级,用户可以根据自己的业务和数据特性选择合适的压缩等级;ES创建索引时指定index.codec:jd_zstd(压缩等级为3)或者jd_zstd_6(压缩等级为...不同文档Document中的同一列(Field)数据相邻存放,加速列聚合分析性查询。相邻每列类型相同,在存储的时候可以进行统一性的编码优化,提高压缩率,减少存储磁盘空间的占用。...ES中字段使用doc_values字为true,即为开启列存储。 索引相关文件:主要文件包括字典数据文件.tim和倒排索引.doc文件。ES依靠分词器产生倒排索引,从而具备强大的全文检索能力。...倒排索引也会进行压缩,其压缩算法主要有Frame Of Reference、Roaring Bitmap和fst等。 向量数据文件:矢量索引tvx和矢量数据.tvd文件,支持以图搜图,和音频的查找等。...zstd主要压缩为行存储相关文件.fdm、.fdt 和.fdx;如下代码块为压缩文件对比,可以看出在不同的压缩算法中,这几个文件的大小是不同的。
在下面这个测试中,SPL采用数据类型优化和有序压缩列存后,数据存储量减少了31%,而计算性能提高了9倍多。...具体做法是:为每列数据建立固定大小(例如 1024 个索引位)的索引区,每个索引位存储一条记录的起始位置,相当于一条记录为一块。...追加记录到索引位填满后,重写索引区,丢弃偶数索引位,奇数位向前移动,空出索引区后一半位置。相当于将分块数缩减为 512 个,两条记录为一块。依次类推,重复追加数据、填满、重写索引区的过程。...理论上讲,要在索引中把各个字段的物理位置都记录下来,索引容量就会比行存时的索引大很多,甚至可能和原数据表一样大(因为每个字段都有个物理位置,索引中的数据量和原数据相同,仅是数据类型简单)。...回顾与总结采用列存可以只读取需要的列,在总列数较多、计算涉及的列较少时,能减少硬盘访问量,提高性能。但仅此还不够,列存数据仓库还要在数据压缩、多线程并行和查找计算等方面做优化以将列存的效果做到最佳。
在这个版本中,为图像互换格式文档扩充了图形控制区块、备注、说明、应用程序接口等四个区块,并提供了对透明色和多帧动画的支持。现在我们一般所说的GIF动画都是指89a的格式。...; pixel - 全局颜色列表大小,pixel+1确定颜色列表的索引数(2^(pixel+1)); 背景颜色:背景颜色在全局颜色列表中的索引(PS:是索引而不是RGB值,所以如果没有全局颜色列表时,该值没有意义...整个GIF在每一帧的画面数组时,是不会出现RGB值的,画面中所有像素的RGB值,都是通过从全局/局部颜色列表中取得。可以让颜色列表理解为调色板。...decodeBitmapData(currentFrame); 这里就是LZW算法从当前帧的数据中解压出当前帧图像的像素索引数组。具体的实现放在最后阅读。...然后将每行的像素值复制到数组相应的位置。在这里需要判断交织模式。交织模式下,图像数据的排列方式如下图。然后通过调用averageColorsNear获取像素索引对应的RGB值放入dest数组中。 ?
pandas 从统计编程语言 R 中带给 Python 许多好处,特别是数据帧对象和 R 包(例如plyr和reshape2),并将它们放置在一个可在内部使用的 Python 库中。...以下显示Missoula列中大于82度的值: 然后可以将表达式的结果应用于数据帧(和序列)的[]运算符,这仅导致返回求值为True的表达式的行: 该技术在 pandas 术语中称为布尔选择,它将构成基于特定列中的值选择行的基础...代替单个值序列,数据帧的每一行可以具有多个值,每个值都表示为一列。 然后,数据帧的每一行都可以对观察对象的多个相关属性进行建模,并且每一列都可以表示不同类型的数据。...创建数据帧期间的行对齐 选择数据帧的特定列和行 将切片应用于数据帧 通过位置和标签选择数据帧的行和列 标量值查找 应用于数据帧的布尔选择 配置 Pandas 我们使用以下导入和配置语句开始本章中的示例...DataFrame对象以及基于各种列中的索引和值选择数据的各种方法。
准备 此秘籍将数据帧的索引,列和数据提取到单独的变量中,然后说明如何从同一对象继承列和索引。...使用set_index,可以通过将drop参数设置为False将列保留在数据帧中。 更多 相反,可以使用reset_index方法将索引变成一列。...这些参数中的每一个都可以设置为字典,该字典将旧标签映射到它们的新值。 更多 重命名行标签和列标签有多种方法。 可以直接将索引和列属性重新分配给 Python 列表。...二、数据帧基本操作 在本章中,我们将介绍以下主题: 选择数据帧的多个列 用方法选择列 明智地排序列名称 处理整个数据帧 将数据帧方法链接在一起 将运算符与数据帧一起使用 比较缺失值 转换数据帧操作的方向...Pandas 定义了内置的len函数以返回行数。 步骤 2 和步骤 3 中的方法将每一列汇总为一个数字。 现在,每个列名称都是序列中的索引标签,其汇总结果为相应的值。
领取专属 10元无门槛券
手把手带您无忧上云