首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【Python】pyecharts 模块 ⑥ ( 绘制柱状图 | pyecharts 绘制柱状图步骤 | 柱状图 x 轴 y 轴 翻转 | 柱状图数据标签位置设置 )

= Bar() 再后 , 设置该 柱状图的 x 轴 和 y 轴数据 , 调用 Bar#add_xaxis() 函数 , 设置 x 轴数据 , 实际数据放在 列表 中 , 作为参数传递给该函数 ; 调用...: 二、柱状图其它设置 ---- 1、柱状图 x 轴 / y 轴 翻转 调用 Bar#reversal_axis() 函数 , 可以翻转 柱状图 的 x 轴 和 y 轴 ; 代码示例 : """ pyecharts...import * # 创建柱状图对象 bar = Bar() # 设置 x 轴数据 bar.add_xaxis(["河北", "河南", "山东", "山西"]) # 设置 y 轴数据 bar.add_yaxis...("GDP", [40391, 58887, 82875, 22870]) # 翻转 x 轴 / y 轴 bar.reversal_axis() # 生成柱状图 bar.render() 打开运行后生成的...render.html 网页 , 效果如下 : 2、柱状图数据标签位置设置 上面的柱状图的 数值标签 都在柱子 的中心位置显示 , 这是默认显示位置 ; 如果我们想要让 数值数据 显示在最右侧 ,

1.3K10

性能超越图神经网络,将标签传递和简单模型结合实现SOTA

本文方法的性能突出展现了如何直接将标签信息纳入学习算法(如在传统技术中所做的那样),并产生简单而实质性的性能提升,也可以将技术融入大型GNN模型中,提供适度增益。...步骤(ii)和(iii)只是后处理,使用的是经典的基于图的半监督学习方法,即标签传播。 ? 图1 任意GNN模型,校正和平滑过程整体概述,并附带一个示例。 假设左侧簇属于橙色类,右侧簇属于蓝色类。...本文方法性能改进的一个主要来源是直接使用标签进行预测。这种想法并不是什么新鲜事,早期的基于扩散的半监督学习算法,如光谱图传感器、高斯随机场模型和标签扩散都使用了这一思想。...本文从一个忽略了图结构的模型的“基础预测”开始。之后,使用标签传播进行误差修正,然后平滑最终预测。这些后处理步骤基于这样一个事实,即连接节点上的错误和标签是正相关的。...此外,我们利用了LP(在没有特性的情况下,它本身的性能往往相当好)和节点特征。我们将看到,将这些补充的信息结合起来会产生很好的预测。 首先,我们使用一个不依赖于图结构的简单的基础预测器。

68510
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    对于散点图,设置kind=’scatter’,绘制出腐败程度与自由度之间的关系,用color=’R’将点定义为红色: df.plot(x=’Corruption’,y=’Freedom’,kind=’scatter...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...坐标轴的设置 取值范围 使用xlim和ylim两个参数可设置x和y轴的范围。在折线图中,我们要将x轴设置为0到20,y限制为从0到100。...比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。...如果我们不希望在坐标轴上看到数字,而是想要设置标签。我们还可以将x轴标签更改为文本标签“低、中、高”这种样式。

    2.5K20

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    对于散点图,设置kind=’scatter’,绘制出腐败程度与自由度之间的关系,用color=’R’将点定义为红色: df.plot(x=’Corruption’,y=’Freedom’,kind=’scatter...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...坐标轴的设置 取值范围 使用xlim和ylim两个参数可设置x和y轴的范围。在折线图中,我们要将x轴设置为0到20,y限制为从0到100。...比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。...如果我们不希望在坐标轴上看到数字,而是想要设置标签。我们还可以将x轴标签更改为文本标签“低、中、高”这种样式。

    2.6K20

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    对于散点图,设置kind=’scatter’,绘制出腐败程度与自由度之间的关系,用color=’R’将点定义为红色: df.plot(x=’Corruption’,y=’Freedom’,kind=’scatter...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...坐标轴的设置 取值范围 使用xlim和ylim两个参数可设置x和y轴的范围。在折线图中,我们要将x轴设置为0到20,y限制为从0到100。...比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。...如果我们不希望在坐标轴上看到数字,而是想要设置标签。我们还可以将x轴标签更改为文本标签“低、中、高”这种样式。

    1.8K50

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    对于散点图,设置kind=’scatter’,绘制出腐败程度与自由度之间的关系,用color=’R’将点定义为红色: df.plot(x=’Corruption’,y=’Freedom’,kind=’scatter...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...取值范围 使用xlim和ylim两个参数可设置x和y轴的范围。在折线图中,我们要将x轴设置为0到20,y限制为从0到100。...比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。...如果我们不希望在坐标轴上看到数字,而是想要设置标签。我们还可以将x轴标签更改为文本标签“低、中、高”这种样式。

    1.9K10

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    对于散点图,设置kind=’scatter’,绘制出腐败程度与自由度之间的关系,用color=’R’将点定义为红色: df.plot(x=’Corruption’,y=’Freedom’,kind=’scatter...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...坐标轴的设置 取值范围 使用xlim和ylim两个参数可设置x和y轴的范围。在折线图中,我们要将x轴设置为0到20,y限制为从0到100。...比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。...如果我们不希望在坐标轴上看到数字,而是想要设置标签。我们还可以将x轴标签更改为文本标签“低、中、高”这种样式。

    2.6K20

    聊一聊matplotlib绘图时自定义坐标轴标签顺序

    直接作图 很明显,这个图并非我们期望的,那么如何按照我们期望的x轴坐标轴标签顺序作图呢? 以下,我们将介绍多种方式,希望能供大家参考~ 2....绘图前先对x,y数据进行排序 当然,除了上述在绘图时对坐标轴标签指定顺序外,我们还可以在绘图前将绘图核心参数x,y的值进行指定排序。...绘图结果 由于忘记了 matplotlib 和 pandas 之间有着很好的兼容性,笔者一开始打算先得到需求顺序的 x = ['大专', '本科', '硕士', '博士'] 和 y = [ 具体的值 ]...分组数据 x = grp['学历要求'] 和 y = grp['平均工资'] 分别得到两个 Series 对象。...打包排序 我们可以通过 zip() 函数将其打包使之成为一个整体,然后通过列表生成式,得到修改顺序后的 y 轴值列表 order_y ,将 order_x 和 order_y 传入制图即可。

    4.9K20

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    对于散点图,设置kind=’scatter’,绘制出腐败程度与自由度之间的关系,用color=’R’将点定义为红色: df.plot(x=’Corruption’,y=’Freedom’,kind=’scatter...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...坐标轴的设置 取值范围 使用xlim和ylim两个参数可设置x和y轴的范围。在折线图中,我们要将x轴设置为0到20,y限制为从0到100。...比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。...如果我们不希望在坐标轴上看到数字,而是想要设置标签。我们还可以将x轴标签更改为文本标签“低、中、高”这种样式。

    1.7K10

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    对于散点图,设置kind='scatter',绘制出腐败程度与自由度之间的关系,用color='R'将点定义为红色: df.plot(x='Corruption',y='Freedom',kind='scatter...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...取值范围 使用xlim和ylim两个参数可设置x和y轴的范围。在折线图中,我们要将x轴设置为0到20,y限制为从0到100。...比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。...如果我们不希望在坐标轴上看到数字,而是想要设置标签。我们还可以将x轴标签更改为文本标签“低、中、高”这种样式。

    1.7K30

    这里有8个流行的Python可视化工具包,你喜欢哪个?

    我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。...我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。...使用 Pygal 非常简单: 实例化图片; 用图片目标属性格式化; 用 figure.add() 将数据添加到图片中。 我在使用 Pygal 的过程中遇到的主要问题在于图片渲染。

    2.1K30

    8个流行的Python可视化工具包,你喜欢哪个?

    我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。...我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。...使用 Pygal 非常简单: 实例化图片; 用图片目标属性格式化; 用 figure.add() 将数据添加到图片中。 我在使用 Pygal 的过程中遇到的主要问题在于图片渲染。

    2.2K20

    8个流行的Python可视化工具包,你喜欢哪个?

    我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。...我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。...使用 Pygal 非常简单: 实例化图片; 用图片目标属性格式化; 用 figure.add() 将数据添加到图片中。 我在使用 Pygal 的过程中遇到的主要问题在于图片渲染。

    2.6K40

    这里有 8 个流行的 Python 可视化工具包,你喜欢哪个?

    我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。...我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。...使用 Pygal 非常简单: 实例化图片; 用图片目标属性格式化; 用 figure.add() 将数据添加到图片中。 我在使用 Pygal 的过程中遇到的主要问题在于图片渲染。

    1.7K40

    8个好看又实用 Python可视化工具包,再也不怕做不出图表了!

    我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。...我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。...使用 Pygal 非常简单: 实例化图片; 用图片目标属性格式化; 用 figure.add() 将数据添加到图片中。 我在使用 Pygal 的过程中遇到的主要问题在于图片渲染。

    4.8K00

    使用 Bokeh 实现动态数据可视化:从基础到高级应用

    # 添加散点图p.circle(x='date', y='value', source=source, size=8, color='red', alpha=0.5)​# 添加柱状图p.vbar(x='...自定义样式和布局Bokeh允许用户对绘图的样式和布局进行高度定制。用户可以调整图形的颜色、线型、填充色等属性,以及标题、标签、图例等元素的样式和位置。...最后,我们将滑动条、按钮和绘图对象添加到一个垂直布局中,并将布局添加到文档中。通过这个交互式应用程序,用户可以通过调整滑动条的值来改变数据的范围,然后点击按钮更新图表,从而实现动态数据可视化。...# 添加散点图p.circle(x='date', y='value', source=source, size=8, color='red', alpha=0.5)​# 添加柱状图p.vbar(x='...= Date.now(); var new_y = Math.random(); // 将新数据点添加到数据流中 stream.data.x.push(new_x); stream.data.y.push

    34100

    这里有8个流行的Python可视化工具包,你喜欢哪个?

    我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。...我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。...使用 Pygal 非常简单: 实例化图片; 用图片目标属性格式化; 用 figure.add() 将数据添加到图片中。 我在使用 Pygal 的过程中遇到的主要问题在于图片渲染。

    2.2K30

    Seaborn-让绘图变得有趣

    因此,第一步是导入pandas允许读取CSV文件的库,然后使用来打印行数,列名和前5行head(5)。...使用figsize,我将尺寸增加到12x8。...图的宽度基于数据的密度。可以将其理解为该特定数据集的直方图,其中黑线是x轴,完全平滑并旋转了90度。 热图 相关矩阵可帮助了解所有功能和标签如何相互关联以及相关程度。...带群图的箱形图 箱形图将信息显示在单独的四分位数和中位数中。与swarm图重叠时,数据点会分布在其位置上,因此根本不会重叠。...对图 该对图会在每对特征和标签之间产生大量的图集。对于特征/标签的每种组合,此图均显示一个散点图,对于其自身的每种组合,均显示一个直方图。绘图本身对于获取手边的数据的本质非常有用。

    3.6K20

    8个流行的Python可视化工具包

    我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。...我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。...使用 Pygal 非常简单: 实例化图片; 用图片目标属性格式化; 用 figure.add() 将数据添加到图片中。 我在使用 Pygal 的过程中遇到的主要问题在于图片渲染。

    62120
    领券