首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

京东猪脸识别比赛数据预处理:用Python将视频每一帧提取存储为图片

大家好,又见面了,我是你们的朋友全栈君。 最近参加京东的猪脸识别比赛,训练集是30个视频,需要将视频的每一帧提取出来存储为图片,存入对应的文件夹(分类标签)。...本例是直接调用了cv2 模块中的 VideoCapture。一次运行,大概10分钟,就能得到预处理后的分类图片了,具体代码如下。 视频每一帧提取存储为图片代码 #!...+ "_%d.jpg" % frame_count, frame, params) frame_count = frame_count+1 cap.release() 递归删除文件的问题...但有个问题,每一个视频转换得到的30个子文件夹里,都有2952张图片,但第2952张是空的,所以只有运用强大的Linux递归删除符合条件的文件了,我是这样删除滴。...-name '*_2952.jpg' -size 0 -print0 |xargs -0 rm 参考 python tools:将视频的每一帧提取并保存 http://blog.csdn.net/

1.1K10

【原创】SQLServer将数据导出为SQL脚本的方法

最近很多同学问到一个问题,如何将MSSQLServer的数据库以及里面的数据导出为SQL脚本,主要问的是MSSQLServer2000和2005,因为2008的管理器已经有了这个功能,2000...上网查了一下,有用命令什么的,这里介绍一个相对简单易操作的方法:         需要借助一个工具----Navicat Premium         Navicat Premium一个很强大的数据库管理工具...不再废话,开始正题:         1.用Navicat Premium连接到你的SQLSERVER数据库,不会连的请自行百度;         2.连接成功后打开连接,会看到你的所有的SQLSERVER...数据库;         3.选择要导出的数据库,右键---数据传输;         4.设置见下图: ?         ...最后进入C:\Users\Administrator\Desktop\目录,找到导出为MySQL脚本.sql文件。

2.1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Vue3将数据导出为Excel—公司偷学技术的第1天

    有一个任务要求是这样的,将抓取到的数据展示在页面之后,可以点击按钮导出问Excel文件。 然后我翻项目原先的代码,也有类似的功能,并且导出之后网络图片也能够保存下来。...], '导出文件名') 第三步生成表格需要传入三个参数列集合,数据集合和文件名。...', 'width':'如果type为image可以设置宽度', 'height':'如果type为image可以设置高度', },{ 'title':'表格中显示的标题',...'key':'数据集合中的键', 'type':'数据类型,text,image', 'width':'如果type为image可以设置宽度', 'height':'如果...type为image可以设置高度', }, ] 至于数据集合这块要求不能套娃,就是数据必须全部在第一层,我就是因为这个然后踩坑了,不得不重新将数据清洗才传入,我的大概就是这样的。

    2K10

    将当前的python环境的依赖包导出为txt文件,之后进入自己创建的虚拟环境,安装对应的依赖包

    目录 将当前的python环境的依赖包导出为txt文件 新建一个虚拟环境,将txt文件里面的依赖导入到新的虚拟环境里面 将当前的python环境的依赖包导出为txt文件 进入自己要导出依赖的虚拟环境...前面有括号就是进来了虚拟环境,如何创建虚拟环境 我们现在要将这个虚拟环境里面的依赖导出为txt文件 执行命令 pip freeze>package.txt ? ? ?...以上就导出了这个文件,你在哪个路径下执行的导出的命令,那么就在哪个路径下找txt文件 新建一个虚拟环境,将txt文件里面的依赖导入到新的虚拟环境里面 先进入你新创建的虚拟环境 之后在cmd里面到你放txt...文件的目录下 执行命令 pip install -r package.txt 一直等的就可以,之后你的虚拟环境里面就有你安装的txt文件里面的依赖

    2K20

    统计师的Python日记【第5天:Pandas,露两手】

    数据导出 ---- 统计师的Python日记【第5天:Pandas,露两手】 前言 根据我的Python学习计划: Numpy → Pandas → 掌握一些数据清洗、规整、合并等功能 → 掌握类似与SQL...上一集开始学习了Pandas的数据结构(Series和DataFrame),以及DataFrame一些基本操作:改变索引名、增加一列、删除一列、排序。 今天我将继续学习Pandas。...得到了一张非常清爽的DataFrame数据表。 现在我要对这张表进行简单的描述性统计: 1. 加总 .sum()是将数据纵向加总(每一列加总) ?...数据透视表 大家都用过excel的数据透视表,把行标签和列标签随意的布局,pandas也可以这么实施,使用 .unstack() 即可: ? 四、数据的导入导出 1....(无分隔符) read_clipboard 读取剪贴板中的数据 read_table可以读取txt的文件,说到这里,想到一个问题——如果txt文件的分隔符很奇怪怎么办?

    3K70

    pandas技巧4

    本文中记录Pandas操作技巧,包含: 导入数据 导出数据 查看、检查数据 数据选取 数据清洗 数据处理:Filter、Sort和GroupBy 数据合并 常识 # 导入pandas import pandas...to_excel(writer,sheet_name='单位') 和 writer.save(),将多个数据帧写入同一个工作簿的多个sheet(工作表) 查看、检查数据 df.head(n) # 查看DataFrame...DataFrame中的每一列应用函数np.mean data.apply(np.max,axis=1) # 对DataFrame中的每一行应用函数np.max df.groupby(col1).col2...() #查看数据值列的汇总统计 df.mean() # 返回所有列的均值 df.corr() # 返回列与列之间的相关系数 df.count() # 返回每一列中的非空值的个数 df.max() # 返回每一列的最大值...df.min() # 返回每一列的最小值 df.median() # 返回每一列的中位数 pd.date_range('1/1/2000', periods=7) df.std() # 返回每一列的标准差

    3.4K20

    利用springboot 将数据库中的数据导出为excle。还实现将excle里面的数据上传到数据库里面

    利用springboot 将数据库中的数据导出为excle 写一个接口,浏览器一输入这个接口,那么就可以导出数据库里面的数据到excle表里面了。要实现这个功能。...我们使用springboot 1 创建一个简单的springboot项目 ? 2 导入操作excle的依赖,和数据库里面的依赖 导出 Excel 时,该字段对应的表头名称;index 代表该字段对应的表头位置(从0开始)。如下图: ? 以上就写好了后台的接口,现在浏览器数据接口,那么就弹出下载框了 ?...实现将excle里面的数据上传到数据库里面 controller // 将excle表里面的数据保存到数据库 @PostMapping("/user/excel2") public...} } excle里面的主键的id值不能和数据库一样,那么这样才可以上传 新准备的excle,excle的名字要和后台的固定 ?

    4.1K30

    python数据分析——数据分析的数据的导入和导出

    然而,数据分析的目的不仅仅是为了理解和解释数据,更重要的是将数据转化为有价值的信息和知识。这就需要将分析结果以易于理解和使用的形式导出,供其他人使用。...数据导出通常包括生成报告、制作图表、提供数据接口等方式,以便将分析结果直观地展示给决策者、业务人员或其他相关人员。 在数据导出时,还需要注意数据的安全性和隐私保护。...pandas导入JSON数据 用Pandas模块的read_json方法导入JSON数据,其中的参数为JSON文件 pandas导入txt文件 当需要导入存在于txt文件中的数据时,可以使用pandas...在该例中,首先通过pandas库的read_csv方法导入sales.csv文件的前10行数据,然后使用pandas库的to_csv方法将导入的数据输出为sales_new.csv文件。...2.3导入到多个sheet页中 【例】将sales.xlsx文件中的前十行数据,导出到sales_new.xlsx文件中名为df1的sheet页中,将sales.xlsx文件中的后五行数据导出到sales_new.xlsx

    18710

    Pandas速查手册中文版

    对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包。...(dict):从字典对象导入数据,Key是列名,Value是数据 导出数据 df.to_csv(filename):导出数据到CSV文件 df.to_excel(filename):导出数据到Excel...DataFrame中的每一列应用函数np.mean data.apply(np.max,axis=1):对DataFrame中的每一行应用函数np.max 数据合并 df1.append(df2):将df2...的列执行SQL形式的join 数据统计 df.describe():查看数据值列的汇总统计 df.mean():返回所有列的均值 df.corr():返回列与列之间的相关系数 df.count():返回每一列中的非空值的个数...df.max():返回每一列的最大值 df.min():返回每一列的最小值 df.median():返回每一列的中位数 df.std():返回每一列的标准差

    12.2K92

    【数据分析】数据缺失影响模型效果?是时候需要missingno工具包来帮你了!

    将pandas导入为 pd import pandas as pd import missingno as msno df = pd.read_csv('xeek_train_subset.csv')...其他列(如WELL、DEPTH_MD和GR)是完整的,并且具有最大的值数。 矩阵图 如果使用深度相关数据或时间序列数据,矩阵图是一个很好的工具。它为每一列提供颜色填充。...当一行的每列中都有一个值时,该行将位于最右边的位置。当该行中缺少的值开始增加时,该行将向左移动。 热图 热图用于确定不同列之间的零度相关性。换言之,它可以用来标识每一列之间是否存在空值关系。...接近0的值表示一列中的空值与另一列中的空值之间几乎没有关系。 有许多值显示为将多个列组合在一起,则其中一列中是否存在空值与其他列中是否存在空值直接相关。树中的列越分离,列之间关联null值的可能性就越小。

    4.8K30

    Python数据分析的数据导入和导出

    数据导出通常包括生成报告、制作图表、提供数据接口等方式,以便将分析结果直观地展示给决策者、业务人员或其他相关人员。 在数据导出时,还需要注意数据的安全性和隐私保护。...squeeze(可选,默认为False):用于指定是否将只有一列的数据读取为Series对象而不是DataFrame对象。 prefix(可选,默认为None):用于给列名添加前缀。...文件 当需要导入存在于txt文件中的数据时,可以使用pandas模块中的read_table方法。...在该例中,首先通过pandas库的read_csv方法导入sales.csv文件的前10行数据,然后使用pandas库的to_csv方法将导入的数据输出为sales_new.csv文件。...示例2 【例】将sales.xlsx文件中的前十行数据,导出到sales_new.xlsx文件中名为df1的sheet页中,将sales.xlsx文件中的后五行数据导出到sales_new.xlsx文件中名为

    26510

    收藏 | 11个Python Pandas小技巧让你的工作更高效(附代码实例)

    本文为你介绍Pandas隐藏的炫酷小技巧,我相信这些会对你有所帮助。 或许本文中的某些命令你早已知晓,只是没意识到它还有这种打开方式。 ? Pandas是一个在Python中广泛应用的数据分析包。...(或者在linux系统中,你可以使用‘head’来展示任意文本文件的前五行:head -c 5 data.txt) 接下来,用 df.columns.tolist() 可以提取每一列并转换成list。...在读取了表格之后,每一列的默认数据类型将会是bool,int64,float64,object,category,timedelta64,或者datetime64。...sort = False: 将数据按照值来排序而不是按照出现次数排序。...当导出表格时,你可以加上float_format=‘%.0f’以便将所有的浮点数近似成整数。当你想把所有列的输出值都变成整数格式时,就可以使用这个技巧,这样一来你就会告别所有数值后带“.0”的烦恼。

    1.2K30

    妈妈再也不用担心我忘记pandas操作了

    ) # 查看DataFrame对象中每一列的唯一值和计数 数据选取: df[col] # 根据列名,并以Series的形式返回列 df[[col1, col2]] # 以DataFrame形式返回多列...: df.describe() # 查看数据值列的汇总统计 df.mean() # 返回所有列的均值 df.corr() # 返回列与列之间的相关系数 df.count() # 返回每一列中的非空值的个数...df.max() # 返回每一列的最大值 df.min() # 返回每一列的最小值 df.median() # 返回每一列的中位数 df.std() # 返回每一列的标准差 数据合并: df1.append...(df2) # 将df2中的行添加到df1的尾部 df.concat([df1, df2],axis=1) # 将df2中的列添加到df1的尾部 df1.join(df2,on=col1,how='inner...的操作上千种,但对于数据分析的使用掌握常用的操作就可以应付了,更多的操作可以参考pandas官网。

    2.2K31

    Pandas 秘籍:1~5

    对于 Pandas 用户来说,了解序列和数据帧的每个组件,并了解 Pandas 中的每一列数据正好具有一种数据类型,这一点至关重要。...类别 pd.Categorical Categorical 仅限于 Pandas。 对于唯一值相对较少的对象列很有用。 准备 在此秘籍中,我们将显示数据帧中每一列的数据类型。...Pandas 定义了内置的len函数以返回行数。 步骤 2 和步骤 3 中的方法将每一列汇总为一个数字。 现在,每个列名称都是序列中的索引标签,其汇总结果为相应的值。...由于数据帧中有九列,因此每所学校的缺失值最大数目为九。 许多学校缺少每一列的值。 步骤 3 删除所有值均缺失的行。...正是这个索引将 Pandas 数据结构与 NumPy 的 n 维数组分开。 索引为数据的每一行和每一列提供了有意义的标签,而 Pandas 用户可以通过使用这些标签来选择数据。

    37.6K10

    快速提升效率的6个pandas使用小技巧

    通过数据类型选择columns 数据分析过程可能会需要筛选数据列,比如只需要数值列,以经典的泰坦尼克数据集为例: import seaborn as sns # 导出泰坦尼克数据集 df = sns.load_dataset...如果说我只要需要数值列,也就是数据类型为int、float的列,可以通过select_dtypes方法实现: df.select_dtypes(include='number').head() 选择除数据类型为...检测并处理缺失值 有一种比较通用的检测缺失值的方法是info(),它可以统计每列非缺失值的数量。...对连续数据进行离散化处理 在数据准备过程中,常常会组合或者转换现有特征以创建一个新的特征,其中将连续数据离散化是非常重要的特征转化方式,也就是将数值变成类别特征。...同样以泰坦尼克数据集为例,里面有一列是年龄特征age: import seaborn as sns # 导出泰坦尼克数据集 df = sns.load_dataset('titanic') df['age

    3.3K10

    独家 | 11个Python Pandas小技巧让你的工作更高效(附代码实例)

    本文为你介绍Pandas隐藏的炫酷小技巧,我相信这些会对你有所帮助。 或许本文中的某些命令你早已知晓,只是没意识到它还有这种打开方式。 ? Pandas是一个在Python中广泛应用的数据分析包。...(或者在linux系统中,你可以使用‘head’来展示任意文本文件的前五行:head -c 5 data.txt) 接下来,用 df.columns.tolist() 可以提取每一列并转换成list。...在读取了表格之后,每一列的默认数据类型将会是bool,int64,float64,object,category,timedelta64,或者datetime64。...当导出表格时,你可以加上float_format=‘%.0f’以便将所有的浮点数近似成整数。当你想把所有列的输出值都变成整数格式时,就可以使用这个技巧,这样一来你就会告别所有数值后带“.0”的烦恼。...你能得到:定期的翻译培训提高志愿者的翻译水平,提高对于数据科学前沿的认知,海外的朋友可以和国内技术应用发展保持联系,THU数据派产学研的背景为志愿者带来好的发展机遇。

    69120
    领券