本文手把手教你使用X2Paddle将PyTorch、TensorFlow模型转换为PaddlePaddle模型,并提供了PaddlePaddle模型的使用实例。...垂涎AI Studio的V100已久却不想花太多时间学习PaddlePaddle细节的你 将PyTorch模型转换为 PaddlePaddle模型 将PyTorch模型转换为PaddlePaddle...模型需要先把PyTorch转换为onnx模型,然后转换为PaddlePaddle模型。...将TensorFlow模型转换 为PaddlePaddle模型 注:model.pb为TF训练好的模型,pb_model为转换为PaddlePaddle之后的文件。 1....python work/X2Paddle_ISSUE/train.py 在本地终端输入以下代码将TF模型转换为PaddlePaddle模型: x2paddle --framework=tensorflow
模型间的相互转换在深度学习应用中很常见,paddlelite和TensorFlowLite是移动端常用的推理框架,有时候需要将模型在两者之间做转换,本文将对转换方法做说明。...环境准备 建议使用TensorFlow2.14,PaddlePaddle 2.6 docker pull tensorflow/tensorflow:2.14.0 Step1:From Paddle to...==0.22.1 pip install onnx-tf 接下来 onnx-tf convert -i model.onnx -o model.pb 会看到输出 2024-04-09 07:03:32,346...- onnx-tf - INFO - Start converting onnx pb to tf saved model 2024-04-09 07:03:41,015 - onnx-tf - INFO...在model.pb目录下可以看到saved_model.pb Step3:From TensorFlow to tflite 参考https://www.tensorflow.org/lite/convert
以BERT为代表的预训练模型是目前NLP领域最火热的方向,但是Google发布的 BERT 是Tensorflow格式的,这让使用pytorch格式 程序猿 们很为难。...为解决这个问题,本篇以BERT为例,介绍将Tensorflow格式的模型转换为Pytorch格式的模型。 1....工具安装 [image.png] 使用工具为:Transformers(链接),该工具对常用的预训练模型进行封装,可以非常方便的使用 pytorch调用预训练模型。...模型转换 下载google的 BERT 模型; 使用如下命令进行转换: export BERT\_BASE\_DIR=/path/to/bert/uncased\_L-12\_H-768\_A-12 transformers
import tensorflow as tf from tensorflow.python.platform import gfile pb_file = ‘xxx/xxx/xxx.pb’ pb_log_dir...= ‘xxx/xxx/log/’ def show_pb_graph(): graph = tf.get_default_graph() graph_def = graph.as_graph_def...() graph_def.ParseFromString(gfile.FastGFile(pb_file, 'rb').read()) tf.import_graph_def(graph_def..., name='graph') writer = tf.summary.FileWriter(pb_log_dir, graph) writer.close() print(...'\n logs has been saved at {} \n'.format(pb_log_dir)) if __name__ == '__main__': show_pb_graph
由于方便快捷,所以先使用Keras来搭建网络并进行训练,得到比较好的模型后,这时候就该考虑做成服务使用的问题了,TensorFlow的serving就很合适,所以需要把Keras保存的模型转为TensorFlow...Keras模型转TensorFlow 其实由于TensorFlow本身以及把Keras作为其高层简化API,且也是建议由浅入深地来研究应用,TensorFlow本身就对Keras的模型格式转化有支持,所以核心的代码很少...原理很简单:原理很简单,首先用 Keras 读取 .h5 模型文件,然后用 tensorflow 的 convert_variables_to_constants 函数将所有变量转换成常量,最后再 write_graph...另外还告诉你冻结了多少个变量,以及你输出的模型路径,pb文件就是TensorFlow下的模型文件。...的session with tf.Session() as sess: # 读取得到的pb文件加载模型 with gfile.FastGFile("/path/to/save/model.pb
AutoGraph将Python代码(包括控制流print()和其他Python原生特性)转换为纯的TensorFlow图代码。...这对于多个GPU或TPU上的分布式训练,或者通过TensorFlow Lite在移动或物联网等其他平台上分发模型而言尤为重要。...转换完成后,此片段的Python assert将转换为使用适当的tf.Assert的图。 def f(x): assert x != 0, 'Do not pass zero!'...当这个实现可用时,你就可以通过有选择的将急切执行代码转换为图片段,以使用AutoGraph来加速研究。...结论 AutoGraph是一款可让你轻松构建直观,复杂的模型,在TensorFlow图中轻松运行的工具。它现在是个实验性工具,但我们希望尽快将其加入到TensorFlow的核心中。
昨天,TensorFlow推出了一个新功能「AutoGraph」,可以将Python代码(包括控制流print()和其他Python原生特性)转换为TensorFlow的计算图(Graph)代码。...这对于多个GPU或TPU上的分布式训练尤为重要,或者通过TensorFlow Lite在移动或物联网等其他平台上分发模型。...return autograph.stack(z) 10view raw 我们还支持像break、continue、print、assert等这些结构,转换后,该部分Python代码中的assert将转换为...最后,AutoGraph可以让你在GPU或者云端TPU等加速器硬件上使用动态模型或者重度控制流模型,用大数据训练大型模型时这是必须的。...将来,AutoGraph将和defun无缝集成,以在eager-style的代码中生成计算图。届时,你可以通过把eager代码转换为计算图片段来使用AutoGraph加速。
如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
[TensorFlow深度学习入门]实战八·简便方法实现TensorFlow模型参数保存与加载(pb方式) 在上篇博文中,我们探索了TensorFlow模型参数保存与加载实现方法采用的是保存ckpt的方式...首先,我会在上篇博文基础上,实现由ckpt文件如何转换为pb文件,再去探索如何在训练时直接保存pb文件,最后是如何利用pb文件复现网络与参数完成应用预测功能。...ckpt文件转换pd文件 ckpt2pd文件代码: import tensorflow as tf pd_dir = "./..../Saver/test1/pb_dir/MyModel.pb 训练保存pd文件 train文件代码 import tensorflow as tf pd_dir = "./..../Saver/test2/pb_dir/MyModel.pb pb文件复现网络与参数 restore文件代码 import tensorflow as tf from saver1 import pd_dir
TensorFlow Detection Model Zoo TensorFlow 目标检测预训练模型: Tensorflow Detection Model Zoo 1.1....TensorFlow 训练得到的模型是 .pb 后缀的二值文件,其同时保存了训练网络的拓扑(topology)结构和模型权重....TensorFlow 目标检测模型转换为 DNN 可调用格式 OpenCV DNN 模块调用 TensorFlow 训练的目标检测模型时,需要一个额外的配置文件,其主要是基于与 protocol buffers...DNN 已可直接调用检测模型 OpenCV 中已经提供的 TensorFlow 目标检测模型和配置文件有: Model Version MobileNet-SSD v1 2017_11_17 weights...frozen graph 文件路径. [2] - --config: TensorFlow 模型训练时的 *.config 文件路径.
如果我有一个训练的模型,想将其转换为.tflite文件,该怎么做?有一些简略提示我该怎么做,我按图索骥,无奈有一些进入了死胡同。...在Tensorboard中评估opt_mnist_graph.pb。 注意dropout和iterator现在不见了。 结果应该是准备好转换为TFLite的图表。...转换为TFLite 最后一步是运行toco工具,及TensorFlow Lite优化转换器。唯一可能令人困惑的部分是输入形状。...转换服务器端模型以实现移动框架兼容性并非易事 - 在移动端机器学习的生命周期中,大量工程师要么停滞不前,要么将大部分时间花在将现有模型转换到移动设备上。...通过遵循这些步骤,我们修剪了不必要的操作,并能够成功地将protobuf文件(.pb)转换为TFLite(.tflite)。
Tensorflow官方提供的Tensorboard可以可视化神经网络结构图,但是说实话,我几乎从来不用。...最近为了排查网络结构BUG花费一周时间,因此,狠下心来决定自己写一个工具,将Tensorflow中的图以最简单的方式显示最关键的网络结构。...2 提取pb文件中的网络结构图 pb文件是将模型参数固化到图文件中,并合并了一些基础计算和删除了反向传播相关计算得到的protobuf协议文件。...如果读者还不懂如何将CKPT模型文件转pb文件,请参考我另一篇文章《 Tensorflow MobileNet移植到Android》的第1节部分。...有了pb模型文件后,接下来是加载模型,加载pb模型示例代码如下所示。
.load() 只能加载.npy文件,.restore() 只能加载 ckpt(checkpoint)文件。
我们了解到,剪枝是一种模型优化技术,包括去掉权重张量中不必要的值。这使模型更小且精度和基线模型非常接近。 在本文中,我们将通过一个示例来应用剪枝,并查看对最终模型大小和预测误差的影响。...---- 导入常见的模块 我们的第一步是导入模块: os 及zipfile 可以帮助我们评估模型的大小 tensorflow_model_optimization用于模型剪枝 load_model...加载保存的模型 当然还有tensorflow 和keras 最后,初始化 TensorBoard,这样我们就能将模型可视化: import os import zipfile import tensorflow...我们将创建一个简单的神经网络来预测目标变量 y,然后我们检查均方差。...这意味着一些权重在训练过程中被转换为零。模型变得稀疏,因此更容易压缩。稀疏模型也使推断更快,因为零可以跳过。 预定的参数是剪枝策略、块大小和池块类型。
模型保存 from tensorflow import graph_util graph_def = tf.get_default_graph().as_graph_def() # variable.../saved_model.pb', mode='wb') as f: f.write(constant_graph.SerializeToString()) 模型加载 graph = tf.get_default_graph
上一篇我介绍了Tensorflow如何数据并行多GPU处理。这一篇我会说一说如何来调试Tensorflow模型。...与普通Python代码相比,由于Tensorflow的符号特性,使得调试Tensorflow代码变得相对困难。我在这里介绍一些Tensorflow中包含的调试工具,它们使调试变得更加容易。...当使用Tensorflow时,最常见的错误可能是将错误大小张量传递给操作运算。...3、使用tf.compute_gradient_error 并非Tensorflow中的所有操作都带有梯度,我们会在无意中很容易用Tensorflow构建无法计算梯度的图。...4、其它 Tensorflow总结和tfdbg(Tensorflow调试器)是可用于调试的其他工具。
例如:通过 tensorflow-js 可以用javascrip脚本加载模型并在浏览器中运行模型。 通过 tensorflow-lite 可以在移动和嵌入式设备上加载并运行TensorFlow模型。...我们主要介绍tensorflow serving部署模型、使用spark(scala)调用tensorflow模型的方法 〇,tensorflow serving模型部署概述 使用 tensorflow...epochs = 100) tf.print("w = ",linear.layers[1].kernel) tf.print("b = ",linear.layers[1].bias) ## 将模型保存成...pb格式文件 export_path = "....ls {export_path+version} assets saved_model.pb variables # 查看模型文件相关信息 !
通过Google发布的tensorflowjs,我们可以将训练好的模型部署到任何一个支持静态页的web服务器上,不需要任何后台服务即可运行tensorflow,部署过程非常简单。...安装tensorflowjs python万金油安装法 pip install tensorflowjs 转换模型 1 tensorflowjs_converter --input_format=keras.../models/modelforjs 后面2个参数第1个是保存好的tf模型路径,第2个参数是输出路径,会生成一个modelforjs目录,里面包含一个model.json文件和二进制数据文件 部署到Web...服务 把生成好的modelforjs拷贝到web服务上,同时引用这个jstensorflow/tfjs/dist/tf.min.js..."> 调用模型 123 var model = await tf.loadLayersModel('modelforjs/model.json'); //加载模型var predict
参考文献Tensorflow 实战 Google 深度学习框架[1]实验平台: Tensorflow1.4.0 python3.5.0 Tensorflow 常用保存模型方法 import tensorflow...将变量取值保存为 pb 文件 # pb文件保存方法 import tensorflow as tf from tensorflow.python.framework import graph_util...output_graph_def = graph_util.convert_variables_to_constants(sess, graph_def, ['add']) # 将导出的模型存入文件中...加载pb文件。.../combined_model.pb" # 读取保存的模型文件,并将其解析成对应的GraphDef Protocol Buffer with gfile.FastGFile(model_filename
> pip install -r requirements_tf.txt 1.2 模型转换 以MobileNet为例,前往https://github.com/tensorflow/models/blob..._frozen.pb执行如下命令完成模型转换: python E:\OpenVINO\openvino_2019.3.334\deployment_tools\model_optimizer\mo_tf.py...--input_shape :指定模型的输入Tensor的shape,如果不指定,则会自动从pb中读取 --output :指定输出节点名称,如果不指定,会自动从图中提取。...注意,如果转换过程中出错了,可以尝试卸载Tenorflow,可能是因为Tensorflow版本问题,改为Tensorflow1.14-cpu版本,笔者这边使用1.14-cpu版本没有问题。...wcout.imbue(std::locale("chs")); wcout << "类别:" << cls << ",概率:" << p << endl; } readLabel函数读取label信息,用于将模型识别出的最大概率类别对应的中文文字
领取专属 10元无门槛券
手把手带您无忧上云