虽然在excel文件中检索的vba代码不知道写了多少遍了,每次需要的时候,都是从网上找,然后写。实在是低效的做法。从网上找了一段代码,放在此处,以后需要的时候可以随手拿来。
出现以下错误: 检索 COM 类工厂中 CLSID 为 {000209FF-0000-0000-C000-000000000046} 的组件失败,原因是出现以下错误: 8000401a 因为配置标识不正确...在windows服务应用程序的配置system.web添加 发布者:全栈程序员栈长
以图搜图模式的图像检索是CBIR(基于内容的图像检索)任务中最难的一块,其中由于图像拍摄角度的不同,有些图片只显示了局部信息,有些则有全局信息,在这种情况下的图像检索匹配的效果,以往算法都表现一般。...(Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking)提到的是当前效果最好的以图搜图的模型,具体而言他是一种基于图像中对象...instance的检索匹配。...作者直接在高层的语义上进行关键点检测,而不是在原图上检测。这也是为什么需要用到tensorflow 的object_detect包的原因。...检索匹配,这一步就超级快了。
如今AI技术在众多科技公司的推动下已经渗透到各行各业,气象行业也不例外。将AI融入到天气预报、大气探测、天气预警以及天气服务中的尝试一直未间断。AI技术的应用背后是大数据的支撑和机器学习的广泛探索。...在复杂的大气物理、化学等机理研究难以取得突破时,融入AI技术是提升气象技术的有利补充。关于天气预报、探测等AI技术的应用上经验比较少,跟大家分享一下我参与实施的在公众气象服务中的一些尝试应用。...AI在公众气象服务中主要应用的技术如下: 1 智能推荐技术 在针对公众旅游休闲的气象服务中,采用了监督式机器学习的人工智能算法,通过对用户喜爱的景区类型、休闲活动项目、出行方式等属性进行分析,综合考虑了天气...3 图像识别技术 每年的花粉季提供的花粉浓度及花粉类别的观测和预报在时效和观测密度上还远远不能满足公众需求,因此我们尝试采用图像识别技术对气传花粉采集的图片进行自动识别,以降低人工成本和设备成本,提高观测密度...在图像识别技术中主要采用了机器学习算法进行花粉图像采集和花粉颗粒标注,并进行花粉颗粒的鲁棒性特征提取,最后使用卷积神经网络作为训练器对花粉图像进行分类,并利用卷积神经网络回归模型实现气传花粉颗粒的自动计数
摘要 本文将从以下几个方面来介绍数组趣味玩法:源代码解析:介绍常用的数组操作方法和相关类的原理和实现方法。应用场景案例:介绍在实际开发中,如何运用数组玩法来解决问题。...类代码方法介绍:介绍常用的数组类和方法的使用方法和实现原理。测试用例:提供测试用例,以展示数组玩法在实际开发中的应用效果。正文简介 数组是Java中最常用的数据结构之一,可以存储一组相同类型的数据。...ArrayList类中包含一个数组,当数组中的元素个数达到数组空间大小时,会自动进行扩容。 Vector类也是Java中的一个动态数组,底层同样使用的是数组实现。...应用场景案例数组玩法在游戏开发中的应用 游戏开发中,常常需要对大量数据进行排序、查找和处理。通过数组的一些趣味玩法,我们不仅可以提高程序的效率,还能够增加游戏的趣味性。 ...比如,在游戏中实现物品栏的排序,我们可以使用快速排序算法。对于新加入的物品,我们可以使用二分查找算法来确定物品在物品栏中的位置。
第三,来自开放集类的 Query 意味着作者的方法必须足够灵活,可以在推理时间之前从类中移除受保护属性的关联。...在第二步中,作者利用参考图像数据集。作者找到与 Query 最相关的图像,然后通过保护属性值进行子集。...实验评估了分类、检索和图像描述的设置,结果显示Bend-VLM在所有比较方法中始终优于。...同样,Kong等人[20]通过在 Query 结果中下采样主要类别解决了图像检索的测试时偏见,而Adept框架[54]使用去偏 Prompt 文本嵌入。...作者在检索、分类和图像描述中消除种族和性别偏见实验表明,作者的方法在降低偏见的同时,始终能提高最差组的表现。 作者发现,作者的方法始终能匹配最佳表现方法的准确性,同时显著降低所有比较方法的偏见。
介绍: 这篇文章是我写的"如何把图片存入sqlServer中"的后续。我建议你在读这篇文章之前先看看那篇。 和存储图片相比,读取图片就要简单多了。...在这篇文章中,我们将讨论如何从SqlServer中检索图片。 并将学习以下几个方面的知识. ·如何设置图片的格式? ·如何使用BinaryWrite方法。...我们已经在Person表中存储了数据,那么我们就写些代码来从表中读取数据。 下面的代码检索了所有的值从Person表中。 从sqlserver中读取图片的代码....在显示图片之前,我们先设置了图片的contentType,然后我们使用BinaryWrite方法把图片输出到浏览器。
stars:>4000 vimrc 检索星星数量超4000的vimrc相关的项目! Tags: None Archives QR Code
原生ES-Module在浏览器中的尝试 其实浏览器原生模块相关的支持也已经出了一两年了(我第一次知道这个事情实在2016年下半年的时候) 可以抛开webpack直接使用import之类的语法 但因为算是一个比较新的东西...(至少一个是运行时解析的、一个是本地编译) 有效的module路径定义 因为是在浏览器端的实现,不会像在node中,有全局module一说(全局对象都在window里了)。.../XXX/module.js' // 不被支持的写法 import module from 'XXX' import module from 'XXX/module.js' 在webpack打包的文件中.../defer/defer.js"> 为了测试上边的观点,在页面中引入了这样三个JS文件,三个文件都会输出一个字符串,在Console面板上看到的顺序是这样的: ?...行内script也会默认添加defer特性 因为在普通的脚本中,defer关键字是只指针对脚本文件的,如果是inline-script,添加属性是不生效的。
因为 GANs 仅仅定义在真值数据中,GANs 通过训练出的生成器来产生合成数据,然后在合成数据上运行判别器,判别器的输出梯度将会告诉你,如何通过略微改变合成数据而使其更加现实。...因此,在实际应用中还是存在一定的困难的。 顺便说一下,VAEs 对可见的离散单元是有效的,但是对隐藏的离散单元却并不奏效(除非你在运用增强算法,比如 DARN 或者 NVIL)。...的论文,尝试将 GAN 理论应用到了文本生成任务上,他们的工作非常有特色,具体可以总结为: 用到的判别器(Discriminator)是卷积神经网络(CNN),而不是递归神经网络(RNN),这可能是一个不错的选择...早期的生成式对抗网络(GANs)都是用逐点判别损失(pointwise discrimination loss)作为优化目标的,而最近的工作都是用类矩匹配的思路来加强优化目标,这里的优化是用矩匹配来做。...本文的初始化非常有意思,特别是在判别器的预训练方面,利用原始的句子和该句子中交换两个词的位置后得到的新句子进行判别训练。(在初始化的过程中,运用逐点分类损失函数对判别器进行优化)。
传感器 图像处理在工程和科研中都具有广泛的应用,例如:图像处理是机器视觉的基础,能够提高人机交互的效率,扩宽机器人的使用范围;在科研方面,相关学者把图像处理与分子动力学相结合,实现了多晶材料、梯度结构等裂纹扩展路径的预测...,具体见深度学习在断裂力学中的应用,以此为契机,偷偷学习一波图像处理相关的技术,近期终于完成了相关程序的调试,还是很不错的,~ 程序主要的功能如下:1、通过程序控制摄像头进行手势图像的采集;2、对卷积网络进行训练...,得到最优模型参数;3、对采集到的手势进行判断,具体如下图所示: 附:后续需要学习的内容主要包括:1、把无线数据传输集成到系统内部;2、提高程序在复杂背景下识别的准确率。...附录:补充材料 1、图像抓取:安装OpenCV、Python PIL等库函数,实现图片的显示、保存、裁剪、合成以及滤波等功能,实验中采集的训练样本主要包含五类,每类200张,共1000张,图像的像素为440...)] cv.imshow("frame",img) cv.imwrite("E:/python/data"+'ges_1'+str(num)+".jpg",img) 其中,VideoCapture()中参数是
当然要利用下metaclass做手脚啦 class Final(type): def __new__(cls, name, bases, classdi...
在当今数字化的时代,AI 模型的应用越来越广泛,而如何提高其在特定环境中的知识检索能力成为了一个关键问题。本文将结合Anthropic 文章,深入探讨改进 AI 模型知识检索的方法。...这样,在检索时,模型可以更好地理解每个块的含义,提高检索的准确性。 2. Contextual BM25 创建 BM25 索引。...在实际应用中,需要在重新排列更多块以提高性能和减少块数以降低延迟和成本之间找到平衡。...五、结论 通过对 Contextual Retrieval 和 reranking 技术的介绍,我们可以看出,这些方法可以结合使用,以最大限度地提高 AI 模型在特定环境中的知识检索准确性。...总之,改进 AI 模型在特定环境中的知识检索是一个复杂而又具有挑战性的问题。但通过不断地探索和创新,我们相信可以找到更加有效的方法,为 AI 技术的发展做出更大的贡献。
本文系DR-BERT算法在文本检索任务中的实践分享,希望对从事检索、排序相关研究的同学能够有所启发和帮助。...在美团业务中,文档检索和排序算法在搜索、广告、推荐等场景中都有着广泛的应用。...图3 BERT的结构和训练模式 在信息检索领域,很多研究人员也开始使用BERT来完成排序任务。...通过BERT强大的语义表征能力,可以很好衡量单词在文档中的重要性。如下图4所示,颜色越深的单词,其重要性越高。其中的“stomach”在第一个文档中的重要性更高。 ?...具体的,在训练过程中,对于每个问题,我们采样n+个正例以及n-个负例作为输入,这些文档是从候选文档集合D中随机产生。注意,由于硬件的限制,我们不能将所有的候选文档都输入到当前模型中。
在本文中,我们全面回顾了将RAG技术集成到AIGC场景中的现有工作。我们首先根据检索器如何增强生成器对RAG基础进行分类。我们提炼了各种检索器和生成器的增强方法论的基本抽象。...虽然RAG的概念最初出现在文本到文本的生成中[32],但它也已被适应到各种领域,包括代码[38]-[40]、音频[41]、[42]、图像[43]-[45]、视频[46]、[47]、3D[48]、[49]...虽然大多数研究兴趣,特别是在LLM研究人员中,集中在文本生成任务中基于查询的RAG上,但认识到其他RAG基础范式也是有效的技术,并具有显著的使用和进一步发展潜力是至关重要的。...尽管检索器和生成器在不同的模态和任务中展现出变化,我们提炼了RAG基础的基本抽象,将应用视为源自这些抽象的适应。...在本节中,我们将介绍用于增强RAG性能的方法。我们根据增强目标将现有方法分为5个不同的组别:输入、检索器、生成器、结果和整个流程。
最近在本地64位win10操作系统+vs2015+office2010(卸载了2016,因为高版本反而不支持),做PPT文档的解析成HTML,在部署到windows server 2012上的时候遇到了不少麻烦...component with CLSID {91493441-5A91-11CF-8700-00AA0060263B} failed due to the following error: 80040154 没有注册类...Server 2008 X64中通过.NET程序调用32位com组件的问题,按照其说的,在Visual Studio中,将编译的目标平台(Platform target)设置为:X86,然后重新统计发布项目...最后终于发现问题,DCOM配置中一直配置的是【Microsoft Office PowerPoint 预览器】 原来一直都配置错地方了,可是DCOM中也没有【Microsoft Office PowerPoint...幻灯片】啊,原来服务器是64位了,没有加载32位的组件,运行中敲入mmc -32,在控制台中‘文件’‘添加/删除管理单元’选择‘组件服务’添加,就会出现【Microsoft Office PowerPoint
在本文中,我们将了解如何使用 Cropper.js 在 React Web 应用中裁剪图像。尽管我们不会将这些图像上传到远程服务器进行存储,但是很容易就能完成这个任务。...React应用中的Cropper.js 如你所见,有一个带有源图像的交互式 canvas。操作的结果显示在“预览”框中,如果需要,可以将其保存。实际上,我们会将结果发送到远程服务器,但这取决于你。...在命令行中,执行以下操作: npx create-react-app image-crop-example 上面的命令将使用默认模板创建一个新项目。...在 constructor 方法中,我们定义了状态变量,该变量表示最终更改的图像。因为 Cropper.js 需要与 HTML 组件交互,所以需要定义一个引用变量来包含它。...源图像填充使用了该特定组件的用户定义的属性。目标图片使用的状态变量是我们在安装组件后定义的。
图像分类是一种机器学习任务,涉及识别图像中的对象或场景。这是一项具有挑战性的任务,但它在面部识别、物体检测和医学图像分析等现实世界中有许多应用。...在本文中,我们将讨论如何使用 Python 对服装图像进行分类。我们将使用Fashion-MNIST数据集,该数据集是60种不同服装的000,10张灰度图像的集合。...此层将 28x28 图像展平为 784 维矢量。接下来的两层是密集层。这些层是完全连接的层,这意味着一层中的每个神经元都连接到下一层中的每个神经元。最后一层是softmax层。...该层输出 10 个可能类的概率分布。 训练模型 现在模型已经构建完毕,我们可以对其进行训练。我们将使用亚当优化器和分类交叉熵损失函数。...经过 10 个时期,该模型已经学会了对服装图像进行分类,准确率约为 92%。 评估模型 现在模型已经训练完毕,我们可以在测试数据上对其进行评估。
例如,在图像到图像的搜索中,可以将相机对准一座建筑物来搜索其建筑风格,或者使用一幅画来在网上找到衣服。这些例子说明了多模态数据检索如何帮助人们更高效地搜索。...在相关图像分布不均匀的场景中,特别是平衡精度和召回率方面,它特别有用。...模型配置:实验中尝试了不同的文本和图像编码模型配置,如不同的层数,激活函数和微调深度,以找到最能平衡性能和计算效率的特征组合。...主要评估指标如MAP、MAR和MAF1用于评估模型在多模态图像检索任务中的性能。例如,在基础损失条件下,ResNet50在MSCOCO数据集上的MAP从0.70增加到0.80。...6 Conclusion and Future Work 本研究发现了一种多模态视觉语言模型在低资源语言图像检索中的应用,特别关注阿塞拜疆。
领取专属 10元无门槛券
手把手带您无忧上云