首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

尝试按数字列对pandas数据帧进行排序,但得到奇怪的输出

在pandas中,可以使用sort_values()方法对数据帧进行排序。如果你得到了奇怪的输出,可能是由于以下几个原因:

  1. 数据类型不匹配:在排序之前,确保要排序的列的数据类型是一致的。可以使用dtypes属性检查每列的数据类型,并使用astype()方法进行类型转换。
  2. 缺失值处理:如果数据帧中存在缺失值,排序时可能会产生奇怪的结果。可以使用dropna()方法删除包含缺失值的行,或使用fillna()方法填充缺失值。
  3. 排序顺序设置:默认情况下,sort_values()方法按升序排序。如果需要按降序排序,可以将ascending参数设置为False

下面是一个示例代码,演示如何按数字列对pandas数据帧进行排序:

代码语言:txt
复制
import pandas as pd

# 创建示例数据帧
data = {'A': [3, 1, 2],
        'B': [5, 4, 6]}
df = pd.DataFrame(data)

# 按列'A'进行排序
df_sorted = df.sort_values('A')

print(df_sorted)

输出结果应为:

代码语言:txt
复制
   A  B
1  1  4
2  2  6
0  3  5

在这个例子中,我们按列'A'进行了升序排序。如果需要按降序排序,可以使用df.sort_values('A', ascending=False)

关于pandas的更多信息和用法,请参考腾讯云文档中的《pandas数据分析库》

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Pandas 秘籍:1~5

形状属性返回一个单项元组似乎很奇怪,但这是从 NumPy 借来的约定,它允许任意数量的维度的数组。 在步骤 7 中,每个方法返回一个标量值,并作为元组输出。...如果您尝试使用相等运算符对缺失值进行计数并对布尔列求和,则每个数字将得到零: >>> (college_ugds_ == np.nan).sum() UGDS_WHITE 0 UGDS_BLACK...此秘籍将与整个数据帧相同。 第 2 步显示了如何按单个列对数据帧进行排序,这并不是我们想要的。 步骤 3 同时对多个列进行排序。...正如我们在最后一步中按年份和得分排序一样,我们获得的年度最高评分电影。 更多 可以按升序对一列进行排序,而同时按降序对另一列进行排序。...用sort_values替代nlargest 前两个秘籍的工作原理类似,它们以略有不同的方式对值进行排序。 查找一列数据的顶部n值等同于对整个列进行降序排序并获取第一个n值。

37.6K10

Python入门之数据处理——12种有用的Pandas技巧

# 5–多索引 如果你注意到#3的输出,它有一个奇怪的特性。每一个索引都是由3个值组合构成的。这就是所谓的多索引。它有助于快速执行运算。 从# 3的例子继续开始,我们有每个组的均值,但还没有被填补。...# 7–合并数据帧 当我们需要对不同来源的信息进行合并时,合并数据帧变得很重要。假设对于不同物业类型,有不同的房屋均价(INR/平方米)。让我们定义这样一个数据帧: ? ?...# 8–数据帧排序 Pandas允许在多列之上轻松排序。可以这样做: ? ? 注:Pandas的“排序”功能现在已不再推荐。我们用“sort_values”代替。...# 12–在一个数据帧的行上进行迭代 这不是一个常用的操作。毕竟你不想卡在这里,是吧?有时你可能需要用for循环迭代所有的行。例如,我们面临的一个常见问题是在Python中对变量的不正确处理。...加载这个文件后,我们可以在每一行上进行迭代,以列类型指派数据类型给定义在“type(特征)”列的变量名。 ? ? 现在的信用记录列被修改为“object”类型,这在Pandas中表示名义变量。

5K50
  • NumPy 和 Pandas 数据分析实用指南:1~6 全

    六、排序,索引和绘图 现在让我们简要介绍一下使用 pandas 方法对数据进行排序。 在本章中,我们将研究排序和排名。 排序是将数据按各种顺序排列,而排名则是查找数据如果经过排序将位于哪个顺序中。...我们将看看如何在 Pandas 中实现这一目标。 我们还将介绍 Pandas 的分层索引和绘图。 按索引排序 在谈论排序时,我们需要考虑我们到底要排序什么。 有行,列,它们的索引以及它们包含的数据。...让我们首先看一下索引排序。 我们可以使用sort_index方法重新排列数据帧的行,以使行索引按顺序排列。 我们还可以通过将sort_index的访问参数设置为1来对列进行排序。...为此,您需要将sort_index的就地参数设置为true。 虽然我强调了对数据帧进行排序,但是对序列进行排序实际上是相同的。 让我们来看一个例子。....png)] 按值排序 如果我们希望对数据帧的行或元素序列进行排序,则需要使用sort_values方法。

    5.4K30

    python数据分析——数据的选择和运算

    关键技术: 二维数组索引语法总结如下: [对行进行切片,对列的切片] 对行的切片:可以有start:stop:step 对列的切片:可以有start:stop:step import pandas...True表示按连结主键(on 对应的列名)进行升序排列。 【例】创建两个不同的数据帧,并使用merge()对其执行合并操作。 关键技术:merge()函数 首先创建两个DataFrame对象。...How 提到了连接的类型 left_suffix 要从左框架的重叠列中使用的后缀 right_suffix 要从右框架的重叠列中使用的后缀 sort 对输出进行排序 【例】对于存储在本地的销售数据集...关键技术:对于例子给定的DataFrame数据,按行进行求和并输出结果。...按照数据进行排序,首先按照C列进行降序排序,在C列相同的情况下,按照B列进行升序排序。

    19310

    10招!看骨灰级Pythoner如何玩转Python

    但如果你要读取很大的数据,尝试添加这个参数:nrows = 5,以便在实际加载整个表之前仅读取表的一小部分。然后你可以通过选择错误的分隔符来避免错误(它不一定总是以逗号分隔)。...此参数还有另一个优点,如果你有一个同时包含字符串和数字的列,那么将其类型声明为字符串是一个好选择,这样就可以在尝试使用此列作为键去合并表时不会出错。...]) 选择仅具有数字特征的子数据帧。...df[ c ].value_counts().reset_index() #如果你想将stats表转换成pandas数据帧并进行操作。...df[ c ].value_counts().reset_index().sort_values(by= index ) #显示按值而不是按计数排序的统计数据。 7.

    2.4K30

    涨姿势!看骨灰级程序员如何玩转Python

    但如果你要读取很大的数据,尝试添加这个参数:nrows = 5,以便在实际加载整个表之前仅读取表的一小部分。然后你可以通过选择错误的分隔符来避免错误(它不一定总是以逗号分隔)。...此参数还有另一个优点,如果你有一个同时包含字符串和数字的列,那么将其类型声明为字符串是一个好选择,这样就可以在尝试使用此列作为键去合并表时不会出错。...']) 选择仅具有数字特征的子数据帧。...C. df['c'].value_counts().reset_index(): 如果你想将stats表转换成pandas数据帧并进行操作。 4....D. df['c'].value_counts().reset_index().sort_values(by='index') : 显示按值而不是按计数排序的统计数据。 7.

    2.3K20

    Pandas Sort:你的 Python 数据排序指南

    目录 Pandas 排序方法入门 准备数据集 熟悉 .sort_values() 熟悉 .sort_index() 在单列上对 DataFrame 进行排序 按升序按列排序 更改排序顺序 选择排序算法...在多列上对 DataFrame 进行排序 按升序按多列排序 更改列排序顺序 按降序按多列排序 按具有不同排序顺序的多列排序 根据索引对 DataFrame 进行排序 按升序按索引排序 按索引降序排序 探索高级索引排序概念...在本教程结束时,您将知道如何: 按一列或多列的值对Pandas DataFrame进行排序 使用ascending参数更改排序顺序 通过index使用对 DataFrame 进行排序.sort_index...Pandas 排序方法入门 快速提醒一下,DataFrame是一种数据结构,行和列都带有标记的轴。您可以按行或列值以及行或列索引对 DataFrame 进行排序。...EPA 燃油经济性数据集非常棒,因为它包含许多不同类型的信息,您可以对其进行排序上,从文本到数字数据类型。该数据集总共包含八十三列。 要继续,您需要安装pandas Python 库。

    14.3K00

    懂Excel轻松入门Python数据分析包pandas(二十五):循环序列分组

    ,这里直接给出一种比较直观的解决思路(不一定最优): - 按分数,把数据做一次升序排序 - 生成一新列,值为从 0-9(共10个数字) 的循环数列 - 按循环数列分组,即可得到结果 Excel 的做法...按照惯例,先看看如果在 Excel 上是怎么得到结果(流程前2步): - 排序使用 Excel 内置功能,不详细讲解 - 输出循环数列,可以用函数公式,但这里当然用 Excel 的内置功能即可,先得到一列...0-9(先输入0、1,再下拉即可),然后把这0-9的列复制粘贴到C列中即可 - 后面的分组,统计得到结果,就不要麻烦 Excel 了,你也会烦死 pandas 中的对应实现 怎么样生成需求中的循环数列呢...- 注意:千万不要直接把 cycle 方法转为实际序列,否则会产生死循环 - 行4:对刚刚得到的循环数列做切片 - 行5:转换成 list - 行8:调用这个自定义函数看看效果 接下来是利用这个自定义函数生成分组依据的列...,进行分组统计,得到结果: - 行1:加载数据 - 行2:调用之前定义的函数,获取分组依据 - 行4-10:按分数排序 + 分组统计结果 - 行8:对每个组中的人名(name) 串在一起(','.join

    72240

    懂Excel轻松入门Python数据分析包pandas(二十五):循环序列分组

    ,这里直接给出一种比较直观的解决思路(不一定最优): - 按分数,把数据做一次升序排序 - 生成一新列,值为从 0-9(共10个数字) 的循环数列 - 按循环数列分组,即可得到结果 Excel 的做法...按照惯例,先看看如果在 Excel 上是怎么得到结果(流程前2步): - 排序使用 Excel 内置功能,不详细讲解 - 输出循环数列,可以用函数公式,但这里当然用 Excel 的内置功能即可,先得到一列...0-9(先输入0、1,再下拉即可),然后把这0-9的列复制粘贴到C列中即可 - 后面的分组,统计得到结果,就不要麻烦 Excel 了,你也会烦死 pandas 中的对应实现 怎么样生成需求中的循环数列呢...- 注意:千万不要直接把 cycle 方法转为实际序列,否则会产生死循环 - 行4:对刚刚得到的循环数列做切片 - 行5:转换成 list - 行8:调用这个自定义函数看看效果 接下来是利用这个自定义函数生成分组依据的列...,进行分组统计,得到结果: - 行1:加载数据 - 行2:调用之前定义的函数,获取分组依据 - 行4-10:按分数排序 + 分组统计结果 - 行8:对每个组中的人名(name) 串在一起(','.join

    89810

    python对100G以上的数据进行排序,都有什么好的方法呢

    在本教程结束时,您将知道如何: 按一列或多列的值对Pandas DataFrame进行排序 使用ascending参数更改排序顺序 通过index使用对 DataFrame 进行排序.sort_index...Pandas 排序方法入门 快速提醒一下,DataFrame是一种数据结构,行和列都带有标记的轴。您可以按行或列值以及行或列索引对 DataFrame 进行排序。...EPA 燃油经济性数据集非常棒,因为它包含许多不同类型的信息,您可以对其进行排序上,从文本到数字数据类型。该数据集总共包含八十三列。 要继续,您需要安装pandas Python 库。...这类似于使用列对电子表格中的数据进行排序的方式。 熟悉 .sort_index() 您用于.sort_index()按行索引或列标签对 DataFrame 进行排序。...在本教程中,您学习了如何: 按一列或多列的值对Pandas DataFrame进行排序 使用ascending参数更改排序顺序 通过index使用对 DataFrame 进行排序.sort_index(

    10K30

    Pandas 秘籍:6~11

    最终结果是一个数据帧,其列与原始列相同,但过滤掉了不符合阈值的状态中的行。 由于过滤后的数据帧的标题可能与原始标题相同,因此您需要进行一些检查以确保操作成功完成。...如果我们按字母顺序对出发地和目的地机场的每种组合进行排序,那么我们将为机场之间的航班使用一个标签。 为此,我们使用数据帧的apply方法。 这与分组的apply方法不同。 在步骤 3 中没有形成组。...sort_index方法被调用两次,并对每个级别的实际值进行排序。 请注意,列级别的值是列名SATMTMID和UGDS。 通过步骤 6 进行堆叠和拆栈,我们可以得到截然不同的输出。...更多 我们原始的犯罪数据帧未排序,并且切片仍按预期工作。 对索引进行排序将导致性能大幅提高。...直接在项目开始时尝试同时分析多个变量可能会很困难。 准备 在本秘籍中,我们通过直接用 Pandas 创建单变量和多变量图来对航班数据集进行一些基本的探索性数据分析。

    34K10

    精通 Pandas 探索性分析:1~4 全

    二、数据选择 在本章中,我们将学习使用 Pandas 进行数据选择的高级技术,如何选择数据子集,如何从数据集中选择多个行和列,如何对 Pandas 数据帧或一序列数据进行排序,如何过滤 Pandas 数据帧的角色...我们还将使用各种方法对 Pandas 数据帧进行排序,并学习如何对 Pandas series对象进行排序。...现在,我们将研究如何按不止一列对数据进行排序。...我们还学习了如何对 Pandas 序列对象进行排序。 我们了解了用于从 Pandas 数据帧过滤行和列的方法。 我们介绍了几种方法来实现此目的。...我们学习了 Pandas 数据选择的各种技术,以及如何选择数据子集。 我们还学习了如何从数据集中选择多个角色和列。 我们学习了如何对 Pandas 数据帧或序列进行排序。

    28.2K10

    分析你的个人Netflix数据

    第4步:准备数据分析 在我们进行数字运算之前,让我们先清理一下这些数据,使其更易于处理。 删除不必要的列(可选) 首先,我们将从删除不打算使用的列开始。...在本教程中,我们随后将使用reset_index()将其转换回常规列。根据你的偏好和目标,这可能不是必需的,但是为了简单起见,我们将尝试使用列中的所有数据进行分析,而不是将其中的一些数据作为索引。...数一数我每天看的剧集总数 对数据进行排序和绘图 (当然,我们还有许多其他方法可以用来分析和可视化这些数据。)...() # 使用我们的分类法对索引进行排序,以便星期一(0)是第一个,星期二(1)是第二个,等等。...,并计算每小时的行数,将结果分配给该变量 friends_by_hour = friends['hour'].value_counts() # 使用我们的分类法对索引进行排序,以便午夜(0)是第一个,

    1.7K50

    12种用于Python数据分析的Pandas技巧

    本文将介绍12种用于数据分析的Pandas技巧,为了更好地描述它们的效果,这里我们用一个数据集辅助进行操作。...我们得到了预期的结果。需要注意的一点是,这里head() 函数只作用于第二个输出,因为它包含多行数据。 3. 替换缺失值 对于替换缺失值,fillna()可以一步到位。...从结果上看,缺失值的确被补上了,但这只是最原始的形式,在现实工作中,我们还要掌握更复杂的方法,如分组使用平均值/众数/中位数、对缺失值进行建模等。 4....DataFrame排序 Pandas可以轻松基于多列进行排序,如下所示: data_sorted = data.sort_values(['ApplicantIncome','CoapplicantIncome...这时我们就要手动定义列的类别。虽然很麻烦,但这之后如果我们再检查数据类别: #Check current type: data.dtypes 它的输出会是: ?

    89820

    使用Plotly创建带有回归趋势线的时间序列可视化图表

    数据 为了说明这是如何工作的,让我们假设我们有一个简单的数据集,它有一个datetime列和几个其他分类列。您感兴趣的是某一列(“类型”)在一段时间内(“日期”)的汇总计数。...列可以是数字、类别或布尔值,但是这没关系。 注意:初始部分包含用于上下文和显示常见错误的代码,对于现成的解决方案,请参阅最后的GitHub的代码。...代替由点按时间顺序连接的点,我们有了某种奇怪的“ z”符号。 运行中的go.Scatter()图,但未达到预期。点的连接顺序错误。下面图形是按日期对值进行排序后的相同数据。...这个小问题可能会令人沮丧,因为使用px,图形可以按您期望的方式运行,而无需进行任何调整,但go并非如此。要解决该问题,只需确保按日期对数组进行排序,以使其按某种逻辑顺序绘制和连接点。...读取和分组数据 在下面的代码块中,一个示例CSV表被加载到一个Pandas数据框架中,列作为类型和日期。类似地,与前面一样,我们将date列转换为datetime。

    5.1K30

    利用 Pandas 的 transform 和 apply 来处理组级别的丢失数据

    文章结构: Pandas fillna 概述 当排序不相关时,处理丢失的数据 当排序相关时,处理丢失的数据 Pandas fillna 概述 ?...但如果这是真实的数据,我们可能会从中得出错误的结论。 ?...我们将对两列进行分组,代码如下: df['filled_weight'] = df.groupby(['gender','age_cohort']) ['weight'].transform(...对一些国家来说,你缺失了最初几年、最后几年或者中间几年的数据。当然,你可以忽略它们。不过,为了可视化,你可能想要填充这些数据。 插值:看时间序列数据插值,你会发现排序变得非常相关。...下载数据帧中的数据示例 让我们看看我们每年有多少国家的数据。 ?

    1.9K10

    媲美Pandas?Python的Datatable包怎么用?

    【导读】工具包 datatable 的功能特征与 Pandas 非常类似,但更侧重于速度以及对大数据的支持。...通过本文的介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大的时候你可以发现它可能比 Pandas 更加强大。...,目前 datatable 包还不能在 Windows 系统上工作,但 Python 官方也在努力地增加其对 Windows 的支持。...▌帧排序 datatable 排序 在 datatable 中通过特定的列来对帧进行排序操作,如下所示: %%time datatable_df.sort('funded_amnt_inv') ___...下面来看看如何在 datatable 和 Pandas 中,通过对 grade 分组来得到 funded_amout 列的均值: datatable 分组 %%time for i in range(100

    7.2K10

    媲美Pandas?Python的Datatable包怎么用?

    作者 | Parul Pandey 译者 | linstancy 责编 | Jane 【导读】工具包 datatable 的功能特征与 Pandas 非常类似,但更侧重于速度以及对大数据的支持。...通过本文的介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大的时候你可以发现它可能比 Pandas 更加强大。...,目前 datatable 包还不能在 Windows 系统上工作,但 Python 官方也在努力地增加其对 Windows 的支持。...▌帧排序 datatable 排序 在 datatable 中通过特定的列来对帧进行排序操作,如下所示: %%timedatatable_df.sort('funded_amnt_inv')_____...下面来看看如何在 datatable 和 Pandas 中,通过对 grade 分组来得到 funded_amout 列的均值: datatable 分组 %%timefor i in range(100

    6.7K30
    领券