首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用netron对mnist网络结构分析「建议收藏」

可以看出一个简单的规律,就是前一级网络的输出size等于后一级网络的输入size. 对照网络,可以完全对应的上: 将shape打印出(由dims表示),可以看出和上图完全吻合。...ndata = 784 2: n->outputs[0]->ndata = 6272 3: n->inputs[0]->ndim = 4 4: n->outputs[0]->ndim = 4 (gdb)...从最后一层的模型看不出它的结构,实际上它是一个全连接层: 这一点可以通过芯原的模型转换工具的转换结果看出来,芯原的转换工具,可以将ONNX模型转换为芯原NPU吃的json文件模型,而netron是支持此类型的可视化输出的...以下模型是和上图同一个模型文件,转换为芯原格式的JSON模型文件后,通过NETRON分析得到的网络模型结构,可以看到,最后一层是全连接。...本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

92920

Numpy中的stack,轴,广播以及CNN介绍

Stack函数 官方API介绍,我是没看懂,不排除有大神看一眼就懂,如果没看懂也没关系,可以继续往下读,相信一定能理解stack究竟是怎么工作的。..., np.newaxis] 以前的arr的shape是(3,4),经过这样的操作之后,就变成了(3,4,1),也就是3个2维数组,每个2维度数组中有4个1维数组,每个1维数组中有1个元素。...,从外边数第二个轴有一层方括号,这里还好一点,最难理解的是最里边的轴,最后来看一下最内侧的轴。...numpy中的广播 广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式。 下面的图片展示了数组 b 如何通过广播来与数组 a 兼容。...简单看看CNN网络能够做什么: 输入 -> CNN 网络 ->输出 如果做图像识别,输入就是要识别的图像,输出就是可能的图像的概率,概率越大,自然可能性越大。

1.1K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于OneFlow实现Unfold Fold算子

    从卷积层说起 熟悉CNN的小伙伴应该知道卷积是一个很常用也很重要的操作,CNN里的卷积和信号处理的卷积并不是一回事,CNN的卷积是做一种二维的互相关运算,以《动手学深度学习》5.1章为示例: 《动手学深度学习...] [2. 3. 5. 6.] [4. 5. 7. 8.] [5. 6. 8. 9.]]...我们假设输入是一个(1, 2, 4, 4)的张量,但在框架内部,我们通常都是以一个一维数组来存储的,如下图所示: 输入内存排布 然而我们需要对应的高维数组索引,OneFlow内部有一个NdIndexHelper...NDIM==2的循环 这里index的计算是从输出往输入推,公式是(以H为例): Oh*stride_h + kh*dilation_h - padding_h 计算得到输入的index,如果小于0或者大于输入的宽高...小结 这部分代码是接手同事写一半的代码完成的,不得不说同事的构思真的很巧妙,通过模板参数能够拓展1d 2d 3d,nchw, nhwc各种格式,尽管直观上不太好理解。

    60310

    NLP经典书籍鱼书笔记4:对比计数统计和推理

    模型的输入:上下文,比如['you','goodbye']这样的单词,但是需要转化为one-hot编码表示。 本文中考虑上下文的两个单词,因此模型会有两个输入层。如果是考虑N个单词,则输入层有N个。...从输入层到中间层的变换使用相同的全连接层(权重都是$W_{in}$) 从中间层到输出层神经元的变换由另一个全连接层完成(权重是$W_{out}$) 中间层的神经元是各个输入层经全连接层变换后得到的值得平均...CBOW模型 + Softmax层 + Cross Entropy Error层 Word2Vec的权重和分布式表示 Word2Vec中使用的网络有两个权重,分别是输入侧的$W{in}$和输出侧的$W{...4, 1, 5, 6]) id_to_word {0: 'you', 1: 'say', 2: 'goodbye', 3: 'and', 4: 'i', 5: 'hello', 6: '.'} corpus..., [2, 4], [3, 1], [4, 5], [1, 6]]) target # 目标值 array([1, 2, 3, 4, 1, 5

    57010

    Python库介绍6 数组的属性

    它等于数组形状的所有元素乘积import numpy as npa=np.ones((3,3))print(a.size)使用ones()构建了一个3*3矩阵,总元素数为9【ndim】ndim输出的是数组的维度...import numpy as npa=np.ones(2)print(a)print(a.ndim)b=np.zeros((3,4))print(b)print(b.ndim)对于一维数组a,ndim...输出1对于二维数组b,ndim输出2【dtype】dtype为数组元素的类型import numpy as npa=np.zeros((3,3))print(a)print(a.dtype)b=np.array...([[1,2,3],[4,5,6],[7,8,9]])print(b)print(b.dtype)数组a中元素为float64型(64位浮点型)数组b中元素为int32型(32位整型)也可以通过dtype...参数指定一些数组的元素类型import numpy as npa=np.zeros((3,3),dtype='int32')print(a)print(a.dtype)其它如:itemsize :数组中每个元素在内存中所占的字节数

    14710

    python-Numpy学习之(一)ndim、shape、dtype、astype的用法

    1.ndim ndim返回的是数组的维度,返回的只有一个数,该数即表示数组的维度。 2.shape shape:表示各位维度大小的元组。返回的是一个元组。...对于一维数组:有疑问的是为什么不是(1,6),因为arr1.ndim维度为1,元组内只返回一个数。 对于二维数组:前面的是行,后面的是列,他的ndim为2,所以返回两个数。...先看最外面的中括号,包含[[1,2,3],[4,5,6]]和[[7,8,9],[10,11,12]],假设他们为数组A、B,就得到[A,B],如果A、B仅仅是一个数字,他的ndim就是2,这就是第一个数...但是A、B是(2,3)的数组。所以结合起来,这就是arr3的shape,为(2,2,3)。 将这种方法类比,也就可以推出4维、5维数组的shape。...有疑问的是:整形数据不应该是int吗?浮点型数据不应该是float吗? 解答:int32、float64是Numpy库自己的一套数据类型。 4.astype astype:转换数组的数据类型。

    75810

    机器学习|从0开始大模型之位置编码

    3、Transformer中的位置编码层 假设你有一个长度为L的输入序列,要计算第K个元素的位置编码,位置编码由不同频率的正弦和余弦函数给出: 函数 k:词序列中的第K个元素 d:词向量维度,比如512...] [ 0.90929743 -0.41614684 0. ]] 4、大模型训练中的位置编码代码 在我们从0训练大模型中,其位置编码的实现如下: def precompute_pos_cis...def unite_shape(pos_cis, x): """调整位置编码的形状以匹配输入张量的形状。"""...ndim = x.ndim # 获取输入的维度 assert 0 ndim # 确保维度有效 assert pos_cis.shape == (x.shape...(xq), xk_out.type_as(xk) # 返回与输入类型一致的输出 这里使用的是RoPE旋转位置编码,和相对位置编码相比,RoPE 具有更好的外推性,Meta 的 LLAMA

    10910

    Numpy中ndim、shape、dtype、astype的用法

    本文介绍numpy数组中这四个方法的区别ndim、shape、dtype、astype。1、ndim? ndim返回的是数组的维度,返回的只有一个数,该数即表示数组的维度。2、shape?...对于二维数组:前面的是行,后面的是列,他的ndim为2,所以返回两个数。对于三维数组:很难看出,下面打印arr3,看下它是什么结构。?...先看最外面的中括号,包含[[1,2,3],[4,5,6]]和[[7,8,9],[10,11,12]],假设他们为数组A、B,就得到[A,B],如果A、B仅仅是一个数字,他的ndim就是2,这就是第一个数...但是A、B是(2,3)的数组。所以结合起来,这就是arr3的shape,为(2,2,3)。将这种方法类比,也就可以推出4维、5维数组的shape。3、dtype?...有疑问的是:整形数据不应该是int吗?浮点型数据不应该是float吗?解答:int32、float64是Numpy库自己的一套数据类型。4、astype? astype:转换数组的数据类型。

    1.9K20

    卷积神经网络中的自我注意

    为什么Self-Attention 这篇文章描述了CNN的自注意力。对于这种自注意力机制,它可以在而不增加计算成本的情况下增加感受野。 它是如何工作的 对前一隐含层的特征进行重塑,使之: ?...请注意,输出的通道数量与自关注的输入相同。 这是论文中的一张图,这些图将这些操作可视化了 ? 通常,我们设置:C * = C / 8。...作为最后一步,我们将输入特征x添加到输出的加权中(gamma是另一个可学习的标量参数): ?...第17行:恢复特征的原始形状 此实现与本文中描述的算法有所不同(但等效),因为它将1x1卷积v(x)和h(x)组合在一起,并且调用为h(x)或“值”。组合的1x1转换层具有C个输入通道和C个输出通道。...此实现与本文中的算法等效,因为学习两个1x1转换层等效于学习一个具有兼容大小的转换层。 结果测试 通过在UNet块中替换conv层,我在UNet体系结构中使用了自注意力层。

    78810
    领券