本文将介绍 AI 模型网络参数方面的一些基本概念,以及硬件相关的性能指标,为后面让大家更了解模型轻量化做初步准备。
部署态中的 AI 模型已经完成了训练阶段,被部署到实际应用环境中,如云端服务器、边缘设备、移动应用等,用于实时或近实时地进行推理预测的过程。...嵌入式设备:包括各种单板计算机(如 Raspberry Pi、Arduino)、微控制器(MCU)、智能模组等,这些设备通常具有低功耗、小体积等特点,常用于智能家居、工业控制、自动驾驶等场景中的数据采集...移动设备:如智能手机、平板电脑、智能穿戴设备等,它们内置处理器、内存和操作系统,能够运行轻量级推理应用,实现基于 AI 的个性化服务、实时分析或设备自主决策。...综上所述,云侧推理和部署的全流程涵盖了模型全生命周期管理、服务接口设计、请求处理与调度、推理执行、系统监控以及硬件优化等多个环节,旨在构建一个高效、稳定、可扩展的云上 AI 服务环境。...移动端部署应用常常有以下场景:智能设备,智慧城市,智能工业互联网,智慧办公室等。
推理系统是一个专门用于部署神经网络模型,执行推理预测任务的 AI 系统。它类似于传统的 Web 服务或移动端应用系统,但专注于 AI 模型的部署与运行。...最后,通过比较推理系统与推理引擎的流程结构,将进一步揭示两者在设计和实施时需考虑的关键要素。AI 生命周期在日常生活中,深度学习的相关方法已经广泛的部署到各类的应用当中。...其中,对于关键点的检测可以通过如 Faster R-CNN、YOLO 等 AI 模型进行输入到输出的映射与转换。...根据上图示的 AI 框架、推理系统与硬件之间的关系,可以看到,除了应对应用场景的多样化需求,推理系统还需克服由不同训练框架和推理硬件所带来的部署环境多样性挑战,这些挑战不仅增加了部署优化和维护的难度,而且易于出错...需要考虑到 AI 框架的不断更新,特别是针对训练优化的迭代,而某些框架甚至不支持在线推理,系统需要具备足够的兼容性。为了支持多种框架,可以利用模型转换工具,将不同框架的模型转换为一种通用的中间表示。
在深入探讨推理引擎的架构之前,让我们先来概述一下推理引擎的基本概念。推理引擎作为 AI 系统中的关键组件,负责将训练好的模型部署到实际应用中,执行推理任务,从而实现智能决策和自动化处理。...随着 AI 技术的快速发展,推理引擎的设计和实现面临着诸多挑战,同时也展现出独特的优势。 本文将详细阐述推理引擎的特点、技术挑战以及如何应对这些挑战,为读者提供一个较为全面的视角。...易用性 易用性是衡量一个 AI 推理引擎是否能够被广泛采纳和高效利用的关键指标。...高性能 高性能是推理引擎的灵魂,它直接决定了 AI 应用的响应速度、资源消耗以及用户体验。...它的设计使得开发者可以在没有 GPU 的情况下,仍然获得较快的推理速度。 MACE:MACE 是小米推出的移动端 AI 计算引擎,全称为 Mobile AI Compute Engine。
推理系统架构是 AI 领域中的一个关键组成部分,它负责将训练好的模型应用于实际问题,从而实现智能决策和自动化。...为了加快推理速度、减少计算资源的消耗,工程师们常常会使用模型压缩技术,如量化、剪枝和蒸馏。此外,硬件加速(如 GPU、TPU)和专用芯片(如 AI 加速器)也是提高推理效率的重要手段。...多框架支持:兼容 TensorFlow、PyTorch、ONNX 等主流 AI 框架。模型优化:集成 TensorRT 等优化工具,进一步提升模型推理性能。...安全性:支持安全传输和访问控制,保障推理服务的安全性。作为一个强大的推理框架,Triton 能够满足多样化的 AI 应用需求,帮助企业和开发者构建高效、可靠的推理服务。...这一功能基于其动态模型发现与加载机制,使得 AI 应用能够迅速适应市场需求变化,如模型精度提升、新功能上线等。配合版本控制和滚动更新策略,可确保服务连续性不受影响。
推理的最终目标,便是将训练好的模型部署到实际的生产环境中,使 AI 真正运行起来,服务于日常生活。推理系统,是一个专门用于部署神经网络模型,执行推理预测任务的 AI 系统。...推理引擎,则是推理系统中的重要组成部分,它主要负责 AI 模型的加载与执行。...通过综合运用这些方法,可以在满足服务需要的同时,实现模型的高效推理和部署。在线部署和优化推理引擎的在线部署和优化是确保 AI 模型能够在实际应用中高效运行的关键环节。...为了应对这些挑战,推理引擎的在线部署和优化显得尤为重要。首先,推理引擎需要支持不同 AI 框架训练得到的模型的转换。...人工客服应用推理引擎或推理系统在人工客服和 AI 对话方面有广泛的应用。以下是一些相关的内容:智能客服:推理引擎可以用于实现智能客服系统,能够理解用户的问题并提供准确的答案。
从前文的简单介绍中,我们提到了可以从内存布局上对推理引擎的 Kernel 进行优化,接下来,我们将先介绍 CPU 和 GPU 的基础内存知识,NCHWX 内存排布格式以及详细展开描述 MNN 这个针对移动应用量身定制的通用高效推理引擎中通过数据内存重新排布进行的内核优化...NCHWX在推理引擎中,或者底层 Kernel 层实际上为了更加适配到 DSA 或者 ASIC 专用芯片会使用 NCHWX 内存排布格式,那么下面我们来详细了解一下 NCHWX 数据排布格式。...MNNMNN 是一个轻量级的深度学习端侧推理引擎,核心解决神经网络模型在端侧推理运行问题,涵盖神经网络模型的优化、转换和推理。
推理系统架构是 AI 领域中的一个关键组成部分,它负责将训练好的模型应用于实际问题,从而实现智能决策和自动化。...为了加快推理速度、减少计算资源的消耗,工程师们常常会使用模型压缩技术,如量化、剪枝和蒸馏。此外,硬件加速(如 GPU、TPU)和专用芯片(如 AI 加速器)也是提高推理效率的重要手段。...多框架支持:兼容 TensorFlow、PyTorch、ONNX 等主流 AI 框架。 模型优化:集成 TensorRT 等优化工具,进一步提升模型推理性能。...安全性:支持安全传输和访问控制,保障推理服务的安全性。 作为一个强大的推理框架,Triton 能够满足多样化的 AI 应用需求,帮助企业和开发者构建高效、可靠的推理服务。...这一功能基于其动态模型发现与加载机制,使得 AI 应用能够迅速适应市场需求变化,如模型精度提升、新功能上线等。配合版本控制和滚动更新策略,可确保服务连续性不受影响。
在ROCm(AMD GPU)上,相反,支持FP8_E4M3以满足常见的推理标准。...通过减少KV缓存的使用,系统能够处理更大的负载并更快地进行推理。
通过 AscendCL,开发者可以更加高效地进行 AI 应用的开发和优化,从而加速 AI 技术在各个领域的应用和落地。AscendCL 的易用性和高效性,使得它成为开发 AI 应用的重要工具之一。...当前昇腾 AI 处理器有不同的执行部件,如 AI Core、AI CPU、Vector Core 等,对应使用不同执行部件的任务,建议多 Stream 的创建按照算子执行引擎划分。...具体计算:分为模型推理/单算子调用/媒体数据处理三部分。模型推理模型加载:模型推理前,需要先将对应的模型加载到系统中。注意加载模型前需要有适配昇腾 AI 处理器的离线模型。...(可选)数据后处理:处理模型推理的结果,此处根据用户的实际需求来处理推理结果,例如用户可以将获取到的推理结果写入文件、从推理结果中找到每张图片最大置信度的类别标识等。...算子调用如果 AI 应用中不仅仅包括模型推理,还有数学运算(例如 BLAS 基础线性代数运算)、数据类型转换等功能,也想使用昇腾的算力,直接通过 AscendCL 接口加载并执行单个算子,省去模型构建、
随着 AI 技术的逐渐成熟,越来越多的企业希望借助 AI 技术创新发展,这也让资本嗅到了工业AI市场的“钱味”。 在这之前,人们普遍认为,工业AI化进程最慢,是最难改变的一个领域。...而基于自身AI技术,早已在医疗、交通等行业生根发展的腾讯、百度等互联网巨头也将触手伸至工业领域,全面助力工业AI化转型。...不足的是,工业AI尚处在初级阶段,用AI来代替质检员,也只是工业AI化进程中的一小环。...同一领域,巨头狭路相逢,免不了对比、较量,你输我赢…… 百度:AI工业生态,稳中有忧 在百度大脑招募AI工业质检合作伙伴的宣文中,我们看到这么一段话:“愿意在质检产品和服务中使用百度AI核心算法模型和AI...公告里,从“构建工业领域的AI生态”一言来看,百度对于AI工业是执着的。
Reality AI 面向工业场景的嵌入式AI应用,如加速度传感器和震动传感器数据,环境音识别等,极大的扩展了 AI On-edge的应用领域。 ?...如以下视频,通过实时手机的加速度传感器的不同状态的数据,通过云端训练对设备的不同状态加以区分,预测加速度传感器设备的剩余适用寿命,并对设备异常加以推理和预测。 ? 或者可以识别不同的环境音- ?...对于AI的工业级应用,有效的数据搜集和标记是AI模型训练和预测的关键,Reality.ai更可以提供详细的工具和指引 - ?...可通过如下链接了解更多内容,更可以下载白皮书 -- https://reality.ai/successful-data-collection-for-machine-learning-with-sensors-part
通过使用 Protobuf,ONNX 能够在不同的 AI 框架之间高效地传输模型数据。...比如 ONNX 就是一种跨平台的模型序列化格式,可以在不同的 AI 框架和运行时环境之间共享模型。Ⅲ....所以在通常情况下,在需要使用模型进行推理时再将其移动到 CPU 上。Ⅱ....很多 AI 推理框架都是用的 FlatBuffers,最主要的有以下两个:MNN: 阿里巴巴的神经网络推理引擎,是一个轻量级的神经网络引擎,支持深度学习的推理与训练。...MindSpore Lite: 一种适用于端边云场景的新型开源深度学习训练/推理框架,提供离线转换模型功能的工具,支持多种类型的模型转换,转换后的模型可用于推理。
使用 Serverless 进行 AI 预测推理 概览 在 AI 项目中,通常大家关注的都是怎么进行训练、怎么调优模型、怎么来达到满意的识别率。...而常规的部署方案,通常都是将模型部署到一台独立设备上,对外以 API 接口的形式提供服务,业务模块或前端 APP 等所需预测推理能力的位置,通过调用 API,传递原始数据,由 AI 推理服务完成预测推理后...而对于 AI 推理来说,其调用需求会随着业务的涨落而涨落,会出现白天高、夜间低的现象,而和 AI 训练时的较固定计算周期和运行时长而有所不同。...同时,目前上面提供的 AI 推理,由于比较简单,并无需使用 GPU。而在模型较复杂,计算量较大的情况下,使用 GPU 将能进一步加速推理速度。...GPU 的使用,可以为 AI 推理的速度带来数量级的加速,将有些需要使用 CPU 秒级的推理,降低到使用 GPU 的10ms级。
「视频结构化」是一种 AI 落地的工程化实现,目的是把 AI 模型推理流程能够一般化。它输入视频,输出结构化数据,将结果给到业务系统去形成某些行业的解决方案。...实现思路 有一个 AI 模型与一段视频,如何进行推理呢?...视频流:OpenCV 打开视频流,获取图像帧 前处理:图像 Resize 成模型输入的 Shape 模型推理:AI 框架进行模型推理,得到输出 后处理:将输出处理成期望的信息 例如,目标检测:解析框的位置和类别...该流程,这里把它分为了输入、推理、输出,都是一个个任务节点,整体采用 Pipeline 方式来编排 AI 推理任务。输入输出时,一般会用 RPC 或消息队列来与业务系统通信。...此外,还可能有: License: 生成、校验相关工具,及管理记录 除了有效期,还可以考虑限制路数、任务等 实时监控: 硬件状态监控、预警 结语 「视频结构化」只是 AI 落地的一部分,实际做方案一是对接算法模型
领取专属 10元无门槛券
手把手带您无忧上云