学习
实践
活动
专区
工具
TVP
写文章

工业大数据分析平台的应用价值探讨

工业大数据分析平台的应用价值探讨 大数据经过多年的潜心发展,在当今可以说是进入到了一个快速发展期。各种围绕大数据的应用开发也迅速火热起来了。 这同样是大数据技术的应用······ 工业大数据分析平台是利用大数据技术开发搭建的为工业企业服务的一体化信息平台。我们国家世界工厂,仅仅成为制造大国是不行的。 大数据以及现在大火的人工智能技术对于传统行业转型升级可谓影响深远,工业大数据分析平台功不可没! 那么工业大数据分析平台在传统行业转型升级中到底可以发挥哪些特别的功能或者是价值? 要了解工业大数据分析平台的应用价值,就要先搞清楚这样的分析平台架构。每次一说道某某分析平台的架构总是会让人有点懵! image.png 通过这样的一个工业大数据分析平台的应用,可以为工业企业创新、产品的研发、工业企业管理等各个方面服务。

52120

工业4.0和大数

工业4.0概念和起源 工业1.0是机械制造时代,工业2.0是电气化与自动化时代,工业3.0是电子信息化时代。 工业4.0中大数据的应用 工业4.0核心是将大数据,云计算以及物联网等新技术应用到工业生产中,从而提高企业,行业的整体效率和竞争力。 在实现智能制造,设备和生产过程中产生的大量数据需要有效的加以利用,这里面就需要构建现金的制造云平台,提供生产数据的大数据分析和处理,优化生产流程,保证产品质量,提高生产效率和生产安全。 随着智能化程度的越高,生产过程中产生的数据会越来越多,大数据应用的需求会越来越强。 举例几个可以想到的大数据应用有: 智能工厂:工厂选址决策,生产任务智能调度 智能生产:KPI监控,生产提前预测 智能物流:发货预测,智能仓储,物流优化等等。

702130
  • 广告
    关闭

    【限时福利】腾讯云大数据产品,爆品特惠4.5折起!

    移动推送、BI、ES、云数仓Doris、数据湖计算DLC,多款产品助您高效挖掘数据潜力,提升数据生产力!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【数据分析工业大数据开启新时代 七大应用分析

    工业大数据的典型应用包括产品创新、产品故障诊断与预测、工业生产线物联网分析、工业企业供应链优化和产品精准营销等诸多方面。本文我们讲就工业大数据在制造企业的应用场景进行逐一梳理。 ?    因此,工业大数据应用所面临的问题和挑战并不比互联网行业的大数据应用少,某些情况下甚至更为复杂。   工业大数据应用将带来工业企业创新和变革的新时代。 ,这些大数据分析将为GE公司对燃气轮机故障诊断和预警提供支撑。 3.工业物联网生产线的大数据应用 现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声。 4.工业供应链的分析和优化   当前,大数据分析已经是很多电子商务企业提升供应链竞争力的重要手段。

    51690

    【数据】工业大数据应用

    工业大数据的九个方面的应用。 第一是加速产品创新设计,传统的产品设计模式是基于设计师的灵感和经验,揣摩消费者的需求喜好,设计产品,针对性不强,不精确。 案例一是波音公司,案例二也不展开了,案例三是宝钢大数据应用。 三是供应链的分析和优化,产品电子标识、物联网、移动互联网等技术能帮助工业类企业获得完善的产品供应链的大数据。 大数据将带来仓储、配送、销售效率的大幅提升和成本的大幅下降,实现供应链的优化。这是宝钢大数据应用的一个例子。 四是产品销售预测与大数据营销。 那么基于大数据分析可以发现,在开学季高校较多的城市对文具的需求会高很多,这样可以对供货做一些调整。 五是生产计划与排程。 在工业类企业对产品进行管理与分析时会产生大量的数据,利用传统的分析方法难以发现数据之间复杂的隐性关联关系。

    39300

    大数据分析大数据分析方法 及 相关工具

    基于此,大数据分析方法理论有哪些呢? ? 大数据分析的五个基本方面 PredictiveAnalyticCapabilities (预测性分析能力) 数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断 AnalyticVisualizations ( 可视化 分析) 不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。 SemanticEngines (语义引擎) 我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。 挖掘 与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,从而实现一些高级别数据分析的需求。

    1.3K80

    大数据分析系统

    概念、分类 数据分析系统的主要功能是从众多外部系统中,采集相关的业务数据,集中存储到系统的数据库中。 根据数据的流转流程,一般会有以下几个模块:数据收集(采集)、数据存储、数据计算、数据分析、数据展示等等。当然也会有在这基础上进行相应变化的系统模型。 按照数据分析的时效性,我们一般会把大数据分析系统分为实时、离线两种类型。实时数据分析系统在时效上有强烈的保证,数据是实时流动的,相应的一些分析情况也是实时的。 而离线数据分析系统更多的是对已有的数据进行分析,时效性上的要求会相对低一点。时效性的标准都是以人可以接受来划分的。 2. 网站流量日志数据分析系统 2.1.

    22620

    大数据分析流程

    一、为什么要做一份数据报告 你是一个在校学生,上着自己喜欢或不喜欢的课,闲来无事,你打开知乎,看到了数据分析话题,你下定决心要成为一个数据分析师,你搞来一堆学习资料和在线课程,看完之后自信满满,准备去投简历 然后发现不清楚各种工具和模型的适用范围,也不知道数据报告需要包括哪些内容,面试的感觉就是一问三不知…… 你是一个工作了一段时间的白领,你觉得现在这份工作不适合你,你下班以后去逛知乎,在上面看到很多人在说大数据代表未来 ,数据分析师是21世纪最性感的十大职业之一……你激动了,你也要成为数据分析师,你利用空余时间补上了统计知识,学了分析工具,然后发现自己目前的工作跟数据分析没啥关系,觉得没有相关经验没公司要你…… 这些问题的根源是什么 一句话可以概括:你没有办法在最短的时间内向招聘者展示,你能够胜任数据分析这项工作。 保证数据的安全性,不对外泄露公司的任何非公开数据,是数据分析师的基本职业道德。

    1.4K41

    何为大数据分析

    基于如此的认识,大数据分析普遍存在的方法理论有哪些呢? 1. 可视化分析。 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了 大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。 4. 语义引擎。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

    55120

    如何实现数据分析工业化?

    为了更好地利用大数据的体量、速度和多样性,让大数据为自己服务,企业需要流程、结构和透明度,而工业化提供了这三样东西。 全文较长,建议阅读时间4分钟。 往期回顾:一张图了解数据分析/挖掘的精髓 为了更好地利用大数据的体量、速度和多样性,让大数据为自己服务,企业需要流程、结构和透明度,而工业化提供了这三样东西。 原因在于,为了更好地利用大数据的体量、速度和多样性,让大数据为自己服务,企业需要流程、结构和透明度,而工业化提供了这三样东西。 让我们来看看制造业的工业化,这是流程的最初起源。多年来,生产经理强调质量控制和流程改进。如果想使数据分析工业化,就需要对数据分析及受其驱动的经营活动采取同样的质量控制措施。 随着数据和分析工具的激增,企业将继续寻求庞大数据集的力量,因为有数据就有见解,有见解就有价值。但想要做到这一点,就必须把工业化的准则融入到数据分析中。

    540100

    基于工业大数据的工业智能发展 | 机器智能 | 趋势研判

    工业智能的基础:工业大数工业大数据是工业智能的基础,通过数据驱动实现工业智能是目前较为可行的途径,随着工业数字化、网络化的进程不断加快,工业领域收集的数据维度不断扩大,主要体现在三个方面 一般意义上,大数据有具有数据量大、数据种类多、商业价值高、处理速度高,在此基础上,工业大数据还有两大特点。 二是实时性强,工业大数据重要的应用场景是实时监测、实时预警、实时控制。一旦数据的采集、传输和应用等全处理流程耗时过长,就难以在生产过程中发挥价值。 大数据在工业企业的应用   企业所积累的数据量以越来越快的速度在增加,很多企业也就顺势将大数据技术引入企业的生产经营中。大数据在工业企业的应用主要体现在三方面: 一是基于数据的产品价值挖掘。 商业模式创新主要体现在两个方面,一是基于工业大数据,工业企业对外能提供什么样的创新性商业服务;二是在工业大数据背景下,能接受什么样的新型的商业服务。

    28840

    工业大数据 OR 工业互联网到底有什么价值

    大数据神话 大数据带来了无穷的想象力和无所不能为的信心,随着消费、政府、物流等大数据行业的快速发展,工业领域内,数字设计、数字工厂、数字制造等概念也一哄而上,仿佛工业大数据已经成为拯救实体经济的 “大力丸”,中国有着规模庞大的各型工业设备、丰富的设备使用场景,中国的工业大数据随处都是。 煤炭对于英国第一次工业革命的战略意义,此刻正如工业大数据之于中国制造2025。由于蒸汽机的驱动,煤炭犹如脱缰之野马,成为工业革命源源不断的动力。 对那些有着厚重的工业技术体系和知识转化的GE、西门子而言,当他们在说工业大数据的时候,他们有着一个我们很多企业没有的隐含条件。不要将无数的现场数据等同于工业大数据。 ? 显然,知识体系必须重新作用于数据本身,才能形成工业大数据的价值。在工业领域,“无知识,不数据”。没有工业经验的线性化指引,数据就不会高速转化,工业大数据的价值,就不会产生。

    31920

    工业大数据应用场景分析

    工业大数据也是一个全新的概念,从字面上理解,工业大数据是指在工业领域信息化应用中所产生的大数据。 ,这些大数据分析将为GE公司对燃气轮机故障诊断和预警提供支撑。 4 工业供应链的分析和优化 当前,大数据分析已经是很多电子商务企业提升供应链竞争力的重要手段。 过去,也有这些大数据,但由于没有大数据的意识,数据分析手段也不足,很多实时数据被丢弃或束之高阁,大量数据的潜在价值被埋没。还有一个重要问题是数据孤岛的问题。 PPV课其他精彩文章: ---- 1、回复“干货”查看干货 数据分析师完整知识结构 2、回复“答案”查看大数据Hadoop面试笔试题及答案 3、回复“设计”查看这是我见过最逆天的设计,令人惊叹叫绝

    90690

    大数据分析技术方案

    一.目标 现在已经进入大数据时代, 数据是无缝连接网络世界与物理世界的DNA。发现数据DNA、重组数据DNA是人类不断认识、探索、实践大数据的持续过程。 大数据分析可以有效地促进营销,个性化医疗治病,帮助学生提高成绩,利于老师提高教学水平,还可以用于教学,许多产品可以用到大数据技术,如量化分析金融产品等。 必须加强大数据技术的研究并实际应用.这里对目前最流行和最实用的用户画像技术进行讲解,并分析大数据分析的常用算法。 二.用户画像 1. 可视化分析系统提供系统监控,权限多级管理,多维数据分析,等等功能,还支持自服务式报表设计和数据分析。 很多深度学习的算法是半监督式学习算法,用来处理存在少量未标识数据的大数据集。

    15820

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • 大数据处理套件

      大数据处理套件

      腾讯大数据处理套件(TBDS)是基于腾讯多年海量数据处理经验,对外提供的可靠、安全、易用的大数据处理平台。你可以根据不同数据处理需求选择合适的大数据分析引擎和相应的实时数据开发、离线数据开发以及算法开发服务,来构建您的大数据应用服务……

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券