首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

深度解析ug1292(1)

ug1292第一页的主题是初始设计检查。这一步是针对综合后或者opt_design阶段生成的dcp。尽管在Vivado下,从功能仿真到综合、布局布线、直至生成.bit文件是相对自动化的流程,但是解决时序违例仍然是一个复杂且耗时的过程。仅仅靠log信息或者布线后的时序报告往往很难定位,这是因为实现过程中的每一步(opt_design逻辑优化,place_design布局, phys_opt_design物理优化, route_design布线)都会做一些优化,这些优化可能会导致关键路径被掩盖,例如,有时发现设计中逻辑级数(Logic Level)较高的路径时序收敛了,反倒是逻辑级数较低甚至为0的路径出现时序违例。因此,采取按部就班的策略,检查每一步的结果,及时且尽早发现设计中的问题是很有必要的。

02

如何让同一层次的模块在布局时更紧凑一些

我们还可以采用手工布局的方式,这对于时序违例路径集中在某一个模块或某一个层次内的情形较为适用。使用此方法时需要注意Pblock的大小。Pblock不能太小,否则会增加布局布线的压力;Pblock也不能太大,否则会浪费资源。实际上,Vivado针对Pblock的资源利用率也提供了指导值,该指导值跟整个芯片的资源利用率指导值一致,可通过命令report_failfast查看。Pblock的形状也是一个重要的因素。通常建议为标准的矩形。不规则的形状如在矩形框中挖掉一个小的矩形形成“回”字形状会严重危害时序性能且导致编译时间增长。Pblock的位置也是一个重要因素。可以先让工具自动布局,在此基础上观察关键模块的分布情况,然后参考此位置确定Pblock的位置。可以看到,使用Pblock要求工程师有一定的工程经验,需要考虑的因素也较多。如果Pblock的位置不合理,可能会出现顾此失彼的情形(Pblock内的模块时序改善了,而其他模块的时序又恶化了)。Pblock的另一弊端是缺乏灵活性。当芯片型号发生改变时很有可能重新确定Pblock的大小或位置。

03

数字IC设计经典笔试题之【FPGA基础】

同步电路的速度是指同步系统时钟的速度,同步时钟愈快,电路处理数据的时间间隔越短,电路在单位时间内处理的数据量就愈大。假设Tco是触发器的输入数据被时钟打入到触发器到数据到达触发器输出端的延时时间(Tco=Tsetpup+Thold);Tdelay是组合逻辑的延时;Tsetup是D触发器的建立时间。假设数据已被时钟打入D触发器,那么数据到达第一个触发器的Q输出端需要的延时时间是Tco,经过组合逻辑的延时时间为Tdelay,然后到达第二个触发器的D端,要希望时钟能在第二个触发器再次被稳定地打入触发器,则时钟的延迟必须大于Tco+Tdelay+Tsetup,也就是说最小的时钟周期Tmin =Tco+Tdelay+Tsetup,即最快的时钟频率Fmax =1/Tmin。FPGA开发软件也是通过这种方法来计算系统最高运行速度Fmax。因为Tco和Tsetup是由具体的器件工艺决定的,故设计电路时只能改变组合逻辑的延迟时间Tdelay,所以说缩短触发器间组合逻辑的延时时间是提高同步电路速度的关键所在。由于一般同步电路都大于一级锁存,而要使电路稳定工作,时钟周期必须满足最大延时要求。故只有缩短最长延时路径,才能提高电路的工作频率。可以将较大的组合逻辑分解为较小的N块,通过适当的方法平均分配组合逻辑,然后在中间插入触发器,并和原触发器使用相同的时钟,就可以避免在两个触发器之间出现过大的延时,消除速度瓶颈,这样可以提高电路的工作频率。这就是所谓"流水线"技术的基本设计思想,即原设计速度受限部分用一个时钟周期实现,采用流水线技术插入触发器后,可用N个时钟周期实现,因此系统的工作速度可以加快,吞吐量加大。注意,流水线设计会在原数据通路上加入延时,另外硬件面积也会稍有增加。

01
领券