Spark2.0提供新型的流式计算框架,以结构化方式处理流式数据,将流式数据封装到Dataset/DataFrame中 思想: 将流式数据当做一个无界表,流式数据源源不断追加到表中,当表中有数据时...第三层、结果表:result table 增量查询时,会将结果表以前的数据进行合并:state状态更新 第四层、输出数据 按照OutputMode,将结果表的数据进行输出 -...,当不设置时,默认只要有新数据,就立即执行查询Query,再进行输出。...设置输出模式, 当数据更新时再进行输出 .outputMode(OutputMode.Update()) // TODO: b....设置输出模式, 当数据更新时再进行输出: mapWithState .outputMode(OutputMode.Update()) // b.
虽然 PySpark 从数据中推断出模式,但有时我们可能需要定义自己的列名和数据类型,本文解释了如何定义简单、嵌套和复杂的模式。...StructType是StructField的集合,它定义了列名、列数据类型、布尔值以指定字段是否可以为空以及元数据。...StructType 是 StructField 的集合,用于定义列名、数据类型和是否可为空的标志。...| +---------+----------+--------+-----+------+------+ 定义嵌套的StructType对象结构 在处理 DataFrame 时,我们经常需要使用嵌套的结构列...,以及如何在运行时更改 Pyspark DataFrame 的结构,将案例类转换为模式以及使用 ArrayType、MapType。
想象一下,针对HDFS中的数据,直接就可以使用SQL进行查询。 Spark SQL支持两种方式来将RDD转换为DataFrame。 第一种方式,是使用反射来推断包含了特定数据类型的RDD的元数据。...Java版本:Spark SQL是支持将包含了JavaBean的RDD转换为DataFrame的。JavaBean的信息,就定义了元数据。...Spark SQL现在是不支持将包含了嵌套JavaBean或者List等复杂数据的JavaBean,作为元数据的。只支持一个包含简单数据类型的field的JavaBean。...,所以Spark SQL的Scala接口,是支持自动将包含了case class的RDD转换为DataFrame的。...与Java不同的是,Spark SQL是支持将包含了嵌套数据结构的case class作为元数据的,比如包含了Array等。
理解这一点很重要,因为如果把DataFrame看做是一个集合类型的话,那么这个集合的元素泛型即为Series; DataFrame可看做是一个二维嵌套的dict,其中第一层dict的key是各个列名;...认识了这两点,那么就很容易理解DataFrame中数据访问的若干方法,比如: 1. [ ],这是一种最常用的数据访问方式,某种意义上沿袭了Python中的语法糖特色。...通常情况下,[]常用于在DataFrame中获取单列、多列或多行信息。具体而言: 当在[]中提供单值或多值(多个列名组成的列表)访问时按列进行查询,单值访问不存在列名歧义时还可直接用属性符号" ....例如,当标签列类型(可通过df.index.dtype查看)为时间类型时,若使用无法隐式转换为时间的字符串作为索引切片,则引发报错 ? 切片形式返回行查询,且为范围查询 ?...由于DataFrame可看做是嵌套dict结构,所以也提供了类似字典中的get()方法,主要适用于不确定数据结构中是否包含该标签时,与字典的get方法非常类似: ? 9. lookup。
在 Spark SQL 中有两种方式可以在 DataFrame 和 RDD 中进行转换: ① 利用反射机制,推导包含某种类型的 RDD,通过反射将其转换为指定类型的 DataFrame,适用于提前知道...DataFrame 中的数据结构信息,即为 Scheme ① 通过反射获取 RDD 内的 Scheme (使用条件)已知类的 Schema,使用这种基于反射的方法会让代码更加简洁而且效果也更好。...在 Scala 中,使用 case class 类型导入 RDD 并转换为 DataFrame,通过 case class 创建 Schema,case class 的参数名称会被利用反射机制作为列名。...case class 可以嵌套组合成 Sequences 或者 Array。这种 RDD 可以高效的转换为 DataFrame 并注册为表。...RDD 转换成 Row val rowRDD = people.map(_.split(",")).map(p=>Row(p(0),p(1).trim)) // 将 Schema
当RDD中数据类型CaseClass样例类时,通过反射Reflecttion获取属性名称和类型,构建Schema,应用到RDD数据集,将其转换为DataFrame。...指定类型+列名 除了上述两种方式将RDD转换为DataFrame以外,SparkSQL中提供一个函数:toDF,通过指定列名称,将数据类型为元组的RDD或Seq转换为DataFrame,实际开发中也常常使用...linesArrayRDD.map(arr=>Row(arr(0).toInt,arr(1),arr(2).toInt)) //5.将RDD转为DataFrame(DF)并指定列名 ...1)、RDD转换DataFrame或者Dataset 转换DataFrame时,定义Schema信息,两种方式 转换为Dataset时,不仅需要Schema信息,还需要RDD数据类型为CaseClass... 3)、DataFrame与Dataset之间转换 由于DataFrame为Dataset特例,所以Dataset直接调用toDF函数转换为DataFrame 当将DataFrame转换为Dataset
Dataframe可以从一个规则的RDD隐式地或显式地创建。有关创建实例请参考Spark官网,或者等待浪尖后续更新。 DataFrame的列式有列名的。...例如,简单的文本文档处理工作流程可能包括几个阶段: 将每个文档的文本分成单词。 将每个文档的单词转换为数字特征向量。 使用特征向量和标签学习预测模型。...该图目前是基于每个stage的输入和输出列名(通常指定为参数)隐含指定的。如果Pipeline形成为DAG,那么stage必须按拓扑顺序指定。...Runtime checking:由于pipelines能够操作带有不同数据类型的Dataframe,肯定不能使用编译时类型检查。...(id, text, label). val training = spark.createDataFrame(Seq((0L, "a b c d e spark", 1.0),(1L, "b d",
0、数据源(Source) 支持4种数据源:TCP Socket(最简单)、Kafka Source(最常用) - File Source:监控某个目录,当目录中有新的文件时,以流的方式读取数据...目前功能属于测试阶段 - 对流式数据进行去重 批处理分析时:UV,唯一访客数 2、案例:物联网数据实时分析 模拟产生监控数据 DSL和SQL进行实时流式数据分析 熟悉SparkSQL...从TCP Socket 读取数据 val inputTable: DataFrame = spark.readStream .format("socket") // 列名称为:value,数据类型为...,按照时间处理数据,其中时间有三种概念: 1)、事件时间EventTime,表示数据本身产生的时间,该字段在数据本身中 2)、注入时间IngestionTime,表示数据到达流式系统时间,简而言之就是流式处理系统接收到数据的时间...,数据延迟到达,先产生的数据,后到达流式应用系统。
当RDD中数据类型CaseClass样例类时,通过反射Reflecttion获取属性名称和类型,构建Schema,应用到RDD数据集,将其转换为DataFrame。...} 09-[掌握]-toDF函数指定列名称转换为DataFrame SparkSQL中提供一个函数:toDF,通过指定列名称,将数据类型为元组的RDD或Seq转换为DataFrame,实际开发中也常常使用...范例演示:将数据类型为元组的RDD或Seq直接转换为DataFrame。...原因:在SparkSQL中当Job中产生Shuffle时,默认的分区数(spark.sql.shuffle.partitions )为200,在实际项目中要合理的设置。...无论是DSL编程还是SQL编程,性能一模一样,底层转换为RDD操作时,都是一样的:Catalyst 17-[掌握]-电影评分数据分析之保存结果至MySQL 将分析数据保持到MySQL表中,直接调用
然而JSON数据的体积却过于庞大,不利于批量数据分析。因此一个常见的数据处理步骤就是将JSON转换为ORC、Parquet等高效的列式存储格式。...Spark 1.3中的Parquet数据源实现了自动分区发现的功能:当数据以Hive分区表的目录结构存在时,无须Hive metastore中的元数据,Spark SQL也可以自动将之识别为分区表。...另一方面,Spark SQL在框架内部已经在各种可能的情况下尽量重用对象,这样做虽然在内部会打破了不变性,但在将数据返回给用户时,还会重新转为不可变数据。...上文讨论分区表时提到的分区剪枝便是其中一种——当查询的过滤条件中涉及到分区列时,我们可以根据查询条件剪掉肯定不包含目标数据的分区目录,从而减少IO。...简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。
Spark应用程序通常是由多个RDD转换操作和Action操作组成的DAG图形。在创建并操作RDD时,Spark会将其转换为一系列可重复计算的操作,最后生成DAG图形。...当触发Action操作时,Spark将根据DAG图形计算出结果(Lazy Evaluation),并将结果返回驱动程序Driver。...例如,Spark中对RDD进行的count、collect、reduce、foreach等操作都属于Action操作,这些操作可以返回具体的结果或将RDD转换为其他格式(如序列、文件等)。...可以使用read方法 从外部数据源中加载数据或直接使用Spark SQL的内置函数创建新的DataFrame。创建DataFrame后,需要定义列名、列类型等元信息。...分区数:适当设置分区数有助于提高性能,并避免将大数据集拆分为过多的小分区而产生管理上的负担。
半结构化数据格式的好处是,它们在表达数据时提供了最大的灵活性,因为每条记录都是自我描述的。但这些格式的主要缺点是它们会产生额外的解析开销,并且不是特别为ad-hoc(特定)查询而构建的。...方法底层还是调用text方法,先加载数据封装到DataFrame中,再使用as[String]方法将DataFrame转换为Dataset,实际中推荐使用textFile方法,从Spark 2.0开始提供...无论是text方法还是textFile方法读取文本数据时,一行一行的加载数据,每行数据使用UTF-8编码的字符串,列名称为【value】。 ...当将结果数据DataFrame/Dataset保存至Hive表中时,可以设置分区partition和分桶bucket,形式如下: 保存模式(SaveMode) 将Dataset...语言编写,如下四种保存模式: 第一种:Append 追加模式,当数据存在时,继续追加; 第二种:Overwrite 覆写模式,当数据存在时,覆写以前数据,存储当前最新数据; 第三种:ErrorIfExists
当使用 format("csv") 方法时,还可以通过完全限定名称指定数据源,但对于内置源,可以简单地使用它们的短名称(csv、json、parquet、jdbc、text 等)。...此示例将数据读取到 DataFrame 列"_c0"中,用于第一列和"_c1"第二列,依此类推。...= true) 1.1 使用标题记录作为列名 如果输入文件中有一个带有列名的标题,则需要使用不提及这一点明确指定标题选项 option("header", True),API 将标题视为数据记录。...例如,设置 header 为 True 将 DataFrame 列名作为标题记录输出,并用 delimiter在 CSV 输出文件中指定分隔符。...append– 将数据添加到现有文件。 ignore– 当文件已经存在时忽略写操作。 error– 这是一个默认选项,当文件已经存在时,它会返回错误。
首先从版本的产生上来看:RDD(Spark1.0) —> DataFrame(Spark1.3) —> DataSet(Spark1.6) 如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果...2)用户友好的 API 风格,既具有类型安全检查也具有 DataFrame 的查询优化特性。 3)DataSet 支持编解码器,当需要访问非堆上的数据时可以避免反序列化整个对象,提高了效率。...5)DataFrame 是 DataSet 的特列,type DataFrame = Dataset[Row] ,所以可以通过 as 方法将 DataFrame 转换为 DataSet。...3.5.1 通过反射的方式获取 Scheam Spark SQL 能够自动将包含有 case 类的 RDD 转换成 DataFrame,case 类定义了 table 的结构,case 类属性通过反射变成了表的列名...可以通过下面两种方式开启该功能: 当数据源为 Parquet 文件时,将数据源选项 mergeSchema 设置为 true。
它具有以下特点: 能够将 SQL 查询与 Spark 程序无缝混合,允许您使用 SQL 或 DataFrame API 对结构化数据进行查询; 支持多种开发语言; 支持多达上百种的外部数据源,包括 Hive...二、DataFrame & DataSet 2.1 DataFrame 为了支持结构化数据的处理,Spark SQL 提供了新的数据结构 DataFrame。...,一个面向的是非结构化数据,它们内部的数据结构如下: DataFrame 内部的有明确 Scheme 结构,即列名、列字段类型都是已知的,这带来的好处是可以减少数据读取以及更好地优化执行计划,从而保证查询效率...在 Spark 2.0 后,为了方便开发者,Spark 将 DataFrame 和 Dataset 的 API 融合到一起,提供了结构化的 API(Structured API),即用户可以通过一套标准的...,Spark 会将其转换为一个逻辑计划; Spark 将此逻辑计划转换为物理计划,同时进行代码优化; Spark 然后在集群上执行这个物理计划 (基于 RDD 操作) 。
在这篇文章中,处理数据集时我们将会使用在PySpark API中的DataFrame操作。...= 'ODD HOURS', 1).otherwise(0)).show(10) 展示特定条件下的10行数据 在第二个例子中,应用“isin”操作而不是“when”,它也可用于定义一些针对行的条件。...13.1、数据结构 DataFrame API以RDD作为基础,把SQL查询语句转换为低层的RDD函数。...通过使用.rdd操作,一个数据框架可被转换为RDD,也可以把Spark Dataframe转换为RDD和Pandas格式的字符串同样可行。...",format="json") 当.write.save()函数被处理时,可看到JSON文件已创建。
https://parquet.apache.org/ 优点 在查询列式存储时,它会非常快速地跳过不相关的数据,从而加快查询执行速度。因此,与面向行的数据库相比,聚合查询消耗的时间更少。...Parquet 能够支持高级嵌套数据结构,并支持高效的压缩选项和编码方案。 Pyspark SQL 支持读取和写入 Parquet 文件,自动捕获原始数据的模式,它还平均减少了 75% 的数据存储。...当将DataFrame写入parquet文件时,它会自动保留列名及其数据类型。Pyspark创建的每个分区文件都具有 .parquet 文件扩展名。...下面是一个将 Parquet 文件读取到 dataframe 的示例。...) 上述示例的输出如下所示。
另外一个构建的方式是字典嵌套字典构造DataFrame数据;嵌套字典赋给DataFrame,pandas会把字典的键作为列,内部字典的键作为索引。...3.2 DataFarme的基础操作 (*1)输出前n行 输出前n行用到了head()函数,如果不加参数,默认输出前5行,加参数,例如3,输出前3行。输出尾部n行同理,用到了tail()函数。...[列名]进行移除;增加列有两个方法:1,直接frame[列名]=值;2,frame[列名]=Series对象,如果被赋值的列不存在,会生成一个新列。...计算两个索引的交集 union 计算两个索引的并集 delete 将位置i的元素删除,并产生新的索引 drop 根据传入的参数删除指定索引值,并产生新索引 unique 计算索引的唯一值序列 is_nuique...fill_value 前向或后向填充时缺失数据的代替值
Hive on Spark:Hive即作为存储又负责sql的解析优化,Spark负责执行。 二、基础概念 1、DataFrame ? DataFrame也是一个分布式数据容器。...同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。...创建DataFrame的几种方式 1、读取json格式的文件创建DataFrame json文件中的json数据不能嵌套json格式数据。...如果现实多行要指定多少行show(行数) * 注意:当有多个列时,显示的列先后顺序是按列的ascii码先后显示。...Assci码排序 将DataFrame转换成RDD时获取字段两种方式,一种是df.getInt(0)下标获取(不推荐使用),另一种是df.getAs(“列名”)获取(推荐使用) 关于序列化问题:
领取专属 10元无门槛券
手把手带您无忧上云