首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Apap图像配准算法[通俗易懂]

图像配准是将两张场景相关的图像进行映射,寻找其中的关系,多用在医学图像配准、图像拼接、不同摄像机的几何标定等方面,其研究也较为成熟。OpenCv中的stitching类就是使用了2007年的一篇论文(Automatic panoramic image stitching using invariant features)实现的。虽然图像配准已较为成熟,但其实其精度、鲁棒性等在某些场合仍不足够,如光线差异很大的两张图片、拍摄角度差异很大的图片等。2013年,Julio Zaragoza等人发表了一种新的图像配准算法Apap(As-Projective-As-Possible Image Stitching with Moving DLT),该算法的效果还是不错的,比opencv自带的auto-stitch效果要好。而2015年也有一篇cvpr是介绍图像配准(Non-rigid Registration of Images with Geometric and Photometric Deformation by Using Local Affine Fourier-Moment Matching),其效果貌似很牛,但没有源码,难以检验。本文简单介绍Apap。

02

ORB-SLAM——a Versatile and Accurate Monocular SLAM System)

本文提出了ORB-SLAM,在大小场景、室内室外环境下都可以实时操作的一种基于特征的单目SLAM系统。系统对复杂的剧烈运动具有鲁棒性,允许宽基线的闭环和重定位,且包含完整的自动初始化。基于最近几年的优秀算法之上,我们从头开始设计了一种新颖的系统,它对所有SLAM任务使用相同的特征:追踪、建图、重定位和闭环。合适策略的存在使得选择的重建点和关键帧具有很好的鲁棒性,并能够生成紧凑的可追踪的地图,只有当场景内容发生变化地图才改变,从而允许长时间操作。本文从最受欢迎的数据集中提供了27个序列的详尽评估。相对于其他最先进的单目SLAM方法,ORB-SLAM实现了前所未有的性能。为了社会的利益,我们将源代码公开。

02

CVPR2018 | 新加坡国立大学论文:利用互补几何模型改善运动分割

选自arXiv 作者:徐迅等人 机器之心编译 参与:路、张倩 许多现实世界的场景不能简单地归类为普通的或者退化的,同时对场景的运动分割也不能简单地划分为基础矩阵方法和单应性矩阵方法。考虑到这些,新加坡国立大学提出了结合多种模型的多视角光谱聚类的框架。实验表明该框架获得最好的运动分割结果。此外,研究者还提出了一个改编自 KITTI 基准的数据集,它包括了许多传统数据集所没有的特征。 许多几何模型被用于运动分割问题,模拟不同种类的相机、场景以及运动。通常情况下,这类问题的基本模型通常是被认为适用于不同场景的,而

07

YOLOPoint开源 | 新年YOLO依然坚挺,通过结合YOLOv5&SuperPoint,成就多任务SOTA

关键点通常是指Low-Level 的Landmark,如点、角点或边缘,它们可以从不同的视角轻松检索。这使得移动车辆能够估计其相对于周围环境的位置和方向,甚至可以使用一个或多个相机执行闭环(即同时定位与地图构建,SLAM)。在历史上,这项任务是通过手工设计的特征描述子来完成的,如ORB,SURF,HOG,SIFT。然而,这些方法要么不支持实时处理,要么在光照变化、运动模糊等干扰下表现不佳,或者检测到的关键点是聚集成簇而不是在图像中分散,这降低了姿态估计的准确性。学习到的特征描述子旨在解决这些问题,通常通过以随机亮度、模糊和对比度的形式进行数据增强。

01

基于图割优化的多平面重建视觉 SLAM(ISMAR2021)

作者提出了一种语义平面 SLAM 系统,该系统使用来自实例平面分割网络的线索来改进位姿估计和映射。虽然主流方法是使用 RGB-D 传感器,但在这样的系统中使用单目相机仍然面临着鲁棒的数据关联和精确的几何模型拟合等诸多挑战。在大多数现有工作中,几何模型估计问题,例如单应性估计和分段平面重建(piece-wise planar reconstruction,PPR),通常由标准(贪婪)RANSAC解决。然而,在缺乏场景信息(即尺度)的情况下,设置RANSAC的阈值是很非常困难的。在这项工作中,作者认为可以通过最小化涉及空间相干性的能量函数来解决两个提到的几何模型(单应性/3D平面),即图割优化,这也解决了经过训练的CNN的输出是不准确的问题。此外,作者根据实验提出了一种自适应参数设置策略,并完成了对各种开源数据集的综合评估。

03

图像拼接——APAP算法[通俗易懂]

*图像拼接是将同一场景的多个重叠图像拼接成较大的图像的一种方法,在医学成像、计算机视觉、卫星数据、军事目标自动识别等领域具有重要意义。图像拼接的输出是两个输入图像的并集。 *图像配准(image alignment)和图像融合是图像拼接的两个关键技术。图像配准是图像融合的基础,而且图像配准算法的计算量一般非常大,因此图像拼接技术的发展很大程度上取决于图像配准技术的创新。早期的图像配准技术主要采用点匹配法,这类方法速度慢、精度低,而且常常需要人工选取初始匹配点,无法适应大数据量图像的融合。图像拼接的方法很多,不同的算法步骤会有一定差异,但大致的过程是相同的。 *图像拼接通常用到五个步骤: 1、根据给定图像 / 集,实现特征匹配 2、通过匹配特征计算图像之间的变换结构 3、利用图像变换结构,实现图像映射 4、针对叠加后的图像,采用APAP之类的算法,对齐特征点 5、通过图割方法,自动选取拼接缝

01

基于图割优化的多平面重建视觉 SLAM(ISMAR2021)

作者提出了一种语义平面 SLAM 系统,该系统使用来自实例平面分割网络的线索来改进位姿估计和映射。虽然主流方法是使用 RGB-D 传感器,但在这样的系统中使用单目相机仍然面临着鲁棒的数据关联和精确的几何模型拟合等诸多挑战。在大多数现有工作中,几何模型估计问题,例如单应性估计和分段平面重建(piece-wise planar reconstruction,PPR),通常由标准(贪婪)RANSAC解决。然而,在缺乏场景信息(即尺度)的情况下,设置RANSAC的阈值是很非常困难的。在这项工作中,作者认为可以通过最小化涉及空间相干性的能量函数来解决两个提到的几何模型(单应性/3D平面),即图割优化,这也解决了经过训练的CNN的输出是不准确的问题。此外,作者根据实验提出了一种自适应参数设置策略,并完成了对各种开源数据集的综合评估。

01

apap图像全景拼接

图像配准(apap)是将两张场景相关的图像进行映射,寻找其中的关系,多用在医学图像配准、图像拼接、不同摄像机的几何标定等方面,其研究也较为成熟。OpenCv中的stitching类就是使用了2007年的一篇论文(Automatic panoramic image stitching using invariant features)实现的。虽然图像配准已较为成熟,但其实其精度、鲁棒性等在某些场合仍不足够,如光线差异很大的两张图片、拍摄角度差异很大的图片等。2013年,Julio Zaragoza等人发表了一种新的图像配准算法Apap(As-Projective-As-Possible Image Stitching with Moving DLT),该算法的效果还是不错的,比opencv自带的auto-stitch效果要好。而2015年也有一篇cvpr是介绍图像配准(Non-rigid Registration of Images with Geometric and Photometric Deformation by Using Local Affine Fourier-Moment Matching),其效果貌似很牛,但没有源码,难以检验。

03

轻量级实时三维激光雷达SLAM,面向大规模城市环境自动驾驶

对于自动驾驶汽车来说,在未知环境中的实时定位和建图非常重要。本文提出了一种快速、轻量级的3D激光雷达SLAM,用于大规模城市环境中自动驾驶车辆的定位。文中提出了一种新的基于深度信息的编码方法,可以对具有不同分辨率的无序点云进行编码,避免了点云在二维平面上投影时丢失维度信息。通过根据编码的深度信息动态选择邻域点来修改主成分分析(PCA),以更少的时间消耗来拟合局部平面。阈值和特征点的数量根据距离间隔自适应,从而提取出稀疏的特征点并均匀分布在三维空间中。提取的关键特征点提高了里程计的准确性,并加快了点云的对齐。在KITTI和MVSECD上验证了该算法的有效性和鲁棒性。里程计估计的快速运行时间为21ms。与KITTI的几种典型的最先进方法相比,所提出的方法将平移误差减少了至少19%,旋转误差减少了7.1%。

07

基于激光雷达增强的三维重建

尽管运动恢复结构(SfM)作为一种成熟的技术已经在许多应用中得到了广泛的应用,但现有的SfM算法在某些情况下仍然不够鲁棒。例如,比如图像通常在近距离拍摄以获得详细的纹理才能更好的重建场景细节,这将导致图像之间的重叠较少,从而降低估计运动的精度。在本文中,我们提出了一种激光雷达增强的SfM流程,这种联合处理来自激光雷达和立体相机的数据,以估计传感器的运动。结果表明,在大尺度环境下,加入激光雷达有助于有效地剔除虚假匹配图像,并显著提高模型的一致性。在不同的环境下进行了实验,测试了该算法的性能,并与最新的SfM算法进行了比较。

01
领券