首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

当使用Kivy改变窗口大小时,如何强制FloatLayout保持与其内部图像相同的尺寸?

当使用Kivy改变窗口大小时,可以通过设置FloatLayout的size_hint属性来保持与其内部图像相同的尺寸。size_hint属性是一个元组,用于指定FloatLayout在父容器中的相对大小。默认情况下,size_hint为(1, 1),表示FloatLayout会填充整个父容器。

要保持FloatLayout与内部图像相同的尺寸,可以将size_hint设置为(None, None),然后通过设置size属性来指定具体的尺寸。例如,如果内部图像的尺寸为(800, 600),可以将FloatLayout的size设置为(800, 600),如下所示:

代码语言:txt
复制
from kivy.app import App
from kivy.uix.floatlayout import FloatLayout
from kivy.uix.image import Image

class MyFloatLayout(FloatLayout):
    def __init__(self, **kwargs):
        super(MyFloatLayout, self).__init__(**kwargs)
        self.size_hint = (None, None)
        self.size = (800, 600)
        
        # 添加内部图像
        img = Image(source='image.png')
        self.add_widget(img)

class MyApp(App):
    def build(self):
        return MyFloatLayout()

if __name__ == '__main__':
    MyApp().run()

在上面的示例中,我们创建了一个自定义的FloatLayout类MyFloatLayout,并在其构造函数中设置了size_hint为(None, None),然后通过设置size属性为(800, 600)来保持与内部图像相同的尺寸。然后,我们添加了一个名为image.png的图像到FloatLayout中。

这样,无论如何改变窗口大小,FloatLayout都会保持与内部图像相同的尺寸。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云云服务器(CVM):https://cloud.tencent.com/product/cvm
  • 腾讯云对象存储(COS):https://cloud.tencent.com/product/cos
  • 腾讯云人工智能(AI):https://cloud.tencent.com/product/ai
  • 腾讯云物联网(IoT):https://cloud.tencent.com/product/iot
  • 腾讯云区块链(BCBaaS):https://cloud.tencent.com/product/baas
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python+OpenCV的图像读取、显示、保存

一、图像的读取 图像的读取主要函数是cv2.imread()。 函数格式:Mat cv::imread (const String & filename, int flags = IMREAD_COLOR) 功能:读取图片文件。 参数: windows位图:后缀名为bmp JPEG文件:后缀名为jpeg/jpg JPEG2000:后缀名为jp2 便携式网络图像文件:后缀名为png TIFF文件:后缀名为tiff/tif 参数二是整型的flag,标志,默认值为IMREAD_COLOR,取值有如下几种: IMREAD_UNCHANGED:如果设置,则按原样返回加载的图像(带有Alpha通道,否则会被裁剪)。 IMREAD_GRAYSCALE:如果设置,总是将图像转换为单通道灰度图像读入。 IMREAD_COLOR:如果设置,总是将图像转换为3通道BGR彩色图像读入。 IMREAD_ANYDEPTH:如果设置,当输入具有相应深度时返回16位/ 32位图像,否则将其转换为8位。 IMREAD_ANYCOLOR:如果设置,图像将以任何可能的颜色格式读取。 IMREAD_LOAD_GDAL:如果设置,总是使用GDAL驱动程序加载图像。 IMREAD_REDUCED_GRAYSCALE_2:如果设置,总是将图像转换为单通道灰度图像,图像尺寸减小1/2。 IMREAD_REDUCED_COLOR_2:如果设置,总是将图像转换为3通道BGR彩色图像,图像尺寸减小1/2。 IMREAD_REDUCED_GRAYSCALE_4:如果设置,总是将图像转换为单通道灰度图像,图像尺寸减小1/4。 IMREAD_REDUCED_COLOR_4:如果设置,总是将图像转换为3通道BGR彩色图像,图像尺寸减小1/4。 IMREAD_REDUCED_GRAYSCALE_8:如果设置,总是将图像转换为单通道灰度图像,图像尺寸减小1/8。 IMREAD_REDUCED_COLOR_8:如果设置,总是将图像转换为3通道BGR彩色图像,图像尺寸减小1/8 常用的是前三种。因为flags是整型,所以传入数值也行: flags >0:等同于IMREAD_COLOR。 flags =0:等同于 IMREAD_GRAYSCALE。 flags <0: 等同于IMREAD_UNCHANGED。 通常是给1、0、-1,给其他整型也是可以的。 返回值:Mat类型。从opencv2开始,用于存放图像的数据类型就是Mat, 二、图像的显示 图像读取后,下一步就是再把图像显示出来,主要函数有:cv2.namedWindows()、cv2.imshow()。再另外再介绍三个函数cv2.waitKey()、cv2.destroyWindow()、cv2.destroyAllWindows()。 2.1 cv2.namedWindows函数介绍 void cv::namedWindow (const String & winname,int flags = WINDOW_AUTOSIZE ) 功能:创建一个窗口。 参数:参数一是winname,给创建的窗口起一个名字,以后通过这个名字调用该窗口;参数二整型的flags,定义窗口的属性,默认值是WINDOW_AUTOSIZE,其他取值如下所示: WINDOW_NORMAL:用户可以调整窗口大小(不受约束)/也可以使用将全屏窗口切换为正常大小。 WINDOW_AUTOSIZE:用户无法调整窗口大小,窗口大小随显示图像的大小而变化。 WINDOW_OPENGL:带有opengl支持的窗口。 WINDOW_FULLSCREEN:将窗口更改为全屏。 WINDOW_FREERATIO:不遵循图像的比例调整图像后在窗口显示 WINDOW_KEEPRATIO:根据图像的比例调整图像后在窗口中显示 2.2 cv2.imshow函数介绍 void cv::imshow (const String & winname, InputArray mat ) 功能:在指定窗口显示图像。 参数:参数一是窗口名;参数二设置为要显示的图像。 注意此函数之后应该跟随函数waitKey,指定窗口显示多少毫秒。 2.3 cv2.waitKey函数介绍 int cv::waitKey (int delay = 0) 功能:等待按键或延迟多少毫秒。 参数:整型的delay,默认值是0。设置为0表示永久等待按键,设置为非零,表示延迟delay毫秒。该函数仅在创建至少一个窗口并且窗口处于活动状态时才起作用。 2.4 cv2.destroyWind

01

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

现有的深度卷积神经网络(CNNs)需要一个固定大小的输入图像(如224×224)。这一要求是“人为的”,可能会降低对任意大小/尺度的图像或子图像的识别精度。在这项工作中,我们为网络配备了另一种池化策略,“空间金字塔池”,以消除上述要求。这种新的网络结构称为SPP-net,可以生成固定长度的表示,而不受图像大小/比例的影响。金字塔池对物体变形也有很强的鲁棒性。基于这些优点,SPP-net一般应改进所有基于cnn的图像分类方法。在ImageNet 2012数据集中,我们证明了SPP-net提高了各种CNN架构的准确性,尽管它们的设计不同。在Pascal VOC 2007和Caltech101数据集中,SPP-net实现了最先进的分类结果使用单一的全图像表示和没有微调。在目标检测中,spp网络的能力也很重要。利用SPP-net算法,只对整个图像进行一次特征映射计算,然后将特征集合到任意区域(子图像),生成固定长度的表示形式,用于训练检测器。该方法避免了卷积特征的重复计算。在处理测试图像时,我们的方法比R-CNN方法快24-102×,而在Pascal VOC 2007上达到了更好或相近的精度。在2014年的ImageNet Large Scale Visual Recognition Challenge (ILSVRC)中,我们的方法在所有38个团队中目标检测排名第二,图像分类排名第三。本文还介绍了本次比赛的改进情况。

02

深度学习经典网络解析:2.AlexNet

在上篇深度学习经典网络解析(一):LeNet-5中我们提到,LeNet-5创造了卷积神经网络,但是LeNet-5并没有把CNN发扬光大,是CNN真正开始走进人们视野的是今天要介绍的——AlexNet网络。AlexNet网络源自于《ImageNet Classification with Deep Convolutional Neural Networks》这篇论文。作者是是Hinton率领的谷歌团队(Alex Krizhevsky,Ilya Sutskever,Geoffrey E. Hinton),Hinton在上一篇博客我们也曾介绍过,他是深度学习之父,在人工智能寒冬时期,Hinton一直就默默地坚持深度网络的方向,终于在2006年的《Science》上提出了DNN,为如今深度学习的繁荣奠定了基础。AlexNet利用了两块GPU进行计算,大大提高了运算效率,并且在ILSVRC-2012竞赛中获得了top-5测试的15.3%error rate, 获得第二名的方法error rate 是 26.2%,可以说差距是非常的大了,足以说明这个网络在当时给学术界和工业界带来的冲击之大。

03

JS获取浏览器窗口大小 获取屏幕,浏览器,网页高度宽度(转)

网页可见区域宽:document.body.clientWidth  网页可见区域高:document.body.clientHeight  网页可见区域宽:document.body.offsetWidth (包括边线的宽)  网页可见区域高:document.body.offsetHeight (包括边线的宽)  网页正文全文宽:document.body.scrollWidth  网页正文全文高:document.body.scrollHeight  网页被卷去的高:document.body.scrollTop  网页被卷去的左:document.body.scrollLeft  网页正文部分上:window.screenTop  网页正文部分左:window.screenLeft  屏幕分辨率的高:window.screen.height  屏幕分辨率的宽:window.screen.width  屏幕可用工作区高度:window.screen.availHeight  屏幕可用工作区宽度:window.screen.availWidth  HTML精确定位:scrollLeft,scrollWidth,clientWidth,offsetWidth  scrollHeight: 获取对象的滚动高度。  scrollLeft:设置或获取位于对象左边界和窗口中目前可见内容的最左端之间的距离  scrollTop:设置或获取位于对象最顶端和窗口中可见内容的最顶端之间的距离  scrollWidth:获取对象的滚动宽度  offsetHeight:获取对象相对于版面或由父坐标 offsetParent 属性指定的父坐标的高度  offsetLeft:获取对象相对于版面或由 offsetParent 属性指定的父坐标的计算左侧位置  offsetTop:获取对象相对于版面或由 offsetTop 属性指定的父坐标的计算顶端位置  event.clientX 相对文档的水平座标  event.clientY 相对文档的垂直座标  event.offsetX 相对容器的水平坐标  event.offsetY 相对容器的垂直坐标  document.documentElement.scrollTop 垂直方向滚动的值  event.clientX+document.documentElement.scrollTop 相对文档的水平座标+垂直方向滚动的量  IE,FireFox 差异如下:  IE6.0、FF1.06+:  clientWidth = width + padding  clientHeight = height + padding  offsetWidth = width + padding + border  offsetHeight = height + padding + border  IE5.0/5.5:  clientWidth = width - border  clientHeight = height - border  offsetWidth = width  offsetHeight = height  (需要提一下:CSS中的margin属性,与clientWidth、offsetWidth、clientHeight、offsetHeight均无关)

01

JS获取浏览器窗口大小 获取屏幕,浏览器,网页高度宽度

网页可见区域宽:document.body.clientWidth 网页可见区域高:document.body.clientHeight 网页可见区域宽:document.body.offsetWidth (包括边线的宽) 网页可见区域高:document.body.offsetHeight (包括边线的宽) 网页正文全文宽:document.body.scrollWidth 网页正文全文高:document.body.scrollHeight 网页被卷去的高:document.body.scrollTop 网页被卷去的左:document.body.scrollLeft 网页正文部分上:window.screenTop 网页正文部分左:window.screenLeft 屏幕分辨率的高:window.screen.height 屏幕分辨率的宽:window.screen.width 屏幕可用工作区高度:window.screen.availHeight 屏幕可用工作区宽度:window.screen.availWidth

03

SPPNet(2015)

RCNN首次将卷积操作引入检测领域用于提取特征,然而现有的深度卷积网络需要输入固定尺寸的图片,这个需求可能会导致对于任意scale/size的图片的识别精确度下降。【深度卷积神经网络由卷积层和全连接层组成,卷积层对于任意大小的图片都可以进行卷积运算提取特征,输出任意大小的特征映射,而全连接层由于本身的性质需要输入固定大小的特征尺度,所以固定尺寸的需求来自于FC层,即使对输入图片进行裁剪、扭曲等变换,调整到统一的size,也会导致原图有不同程度失真、识别精度受到影响】SPPNet提出了**“空间金字塔池化”**消除这种需求,不管图像大小是多大,在整张图片上只需要计算一次,就可以得到整幅图像的特征图,经过池化都会输出一个固定长度的表征。

02
领券