前言 使用Pandas dataframe执行数千甚至数百万次计算仍然是一项挑战。你不能简单的将数据丢进去,编写Python for循环,然后希望在合理的时间内处理数据。...我们编写了一个for循环,通过循环dataframe对每一行应用函数,然后测量循环的总时间。 在i7-8700k计算机上,循环运行5次平均需要0.01345秒。...使用.iterrows() 我们可以做的最简单但非常有价值的加速是使用Pandas的内置 .iterrows() 函数。 在上一节中编写for循环时,我们使用了 range() 函数。...然而,当我们在Python中对大范围的值进行循环时,生成器往往要快得多。 Pandas的 .iterrows() 函数在内部实现了一个生成器函数,该函数将在每次迭代中生成一行Dataframe。...当你想要处理一个庞大的列表时,比如10亿个浮点数,问题就出现了。使用for循环,在内存中创建了大量的内存huge列表,并不是每个人都有无限的RAM来存储这样的东西!
每当我们迭代一个可迭代对象时,for循环通过iter()知道要迭代的项,并使用next()方法返回后续的项。...除非next()方法明确要求它们这样做,否则它们不会返回任何值。 最初创建fib()生成器函数的对象时,它会初始化prev和curr变量。...每当使用next()方法时,该函数将继续生成值,直到prev变得大于5,这时将引起StopIteration异常,如下所示: print(next(gen)) 实现Python中的生成器表达式 你不必在每次执行生成器时都编写函数...但你现在知道使用for循环可以更好地返回值: for i in squared_gen: print(i) 当你编写简单的代码时,生成器表达式非常有用,因为它们易读、易理解。...它使你可以按指定大小的块来加载数据,而不是将整个数据加载到内存中。处理完一个数据块后,可以对dataframe对象执行next()方法来加载下一个数据块。就这么简单!
解决AttributeError: 'DataFrame' object has no attribute 'tolist'当我们在处理数据分析或机器学习任务时,经常会使用Pandas库进行数据的处理和操作...但是,当我们运行这段代码时,会抛出AttributeError: 'DataFrame' object has no attribute 'tolist'的错误。...解决方法要解决这个错误,我们可以使用Pandas库中的.values.tolist()方法来将DataFrame对象转换为列表。...当我们在进行数据分析时,有时候需要将Pandas的DataFrame对象转换为列表以进行后续处理。...最后,我们使用一个循环遍历列表lst,并打印每个学生的信息。
但是,你是否注意到当我们有一个超大数据集时,.apply() 可能会非常慢? 在本文中,我们将讨论一些加速数据操作的技巧,当你想要将某个函数应用于列时。...df['radius_or_3'] = np.maximum(df['radius'],3) 与 .apply() 相比,这里的 NumPy 函数 max 是一种更好的矢量化函数。...我告诉你,对于一个数百万行的数据框,需要 20 多分钟。 我们是否能够找到更高效的方法来执行这项任务呢? 答案是肯定的。...create_range的函数,它接受两个NumPy数组,并通过简单的for循环返回一个NumPy数组。...编写一个独立的函数,可以将NumPy数组作为输入,并直接在Pandas Series(数据帧的列)的 .values 上使用它。 为了方便起见,这是本文中的全部Jupyter笔记本代码。
Spark首先是一个开源框架,当我们发现一些函数具有通用的性质,自然可以考虑contribute给社区,直接加入到Spark的源代码中。...一方面,它让我们享受了利用Scala(当然,也包括Java或Python)更为自然地编写代码实现函数的福利,另一方面,又能精简SQL(或者DataFrame的API),更加写意自如地完成复杂的数据分析。...当然,我们也可以在使用UDF时,传入常量而非表的列名。...此时,UDF的定义也不相同,不能直接定义Scala函数,而是要用定义在org.apache.spark.sql.functions中的udf方法来接收一个函数。...(buffer.getDouble(0) - buffer.getDouble(1)) / buffer.getDouble(1) * 100 } 假设我们创建了这样一个简单的DataFrame
以下是几个关键步骤:2.1 数据读取实时数据可能来自不同的源,如CSV文件、数据库、API等。Pandas提供了多种方法来读取这些数据。...下面列举了一些常见的问题及其解决方案。3.1 内存不足当处理大规模数据时,可能会遇到内存不足的问题。可以通过以下方式优化:分块读取:使用chunksize参数分批次读取数据。...可以通过以下方法提高性能:向量化操作:尽量使用Pandas内置的向量化函数,而不是循环遍历。并行计算:利用多核CPU加速计算过程。...可以通过检查列名拼写是否正确,或者使用.get()方法来避免。...掌握好这些技巧不仅可以帮助我们更高效地处理数据,还能减少许多不必要的麻烦。希望本文能够为读者提供有价值的参考,在实际工作中更好地运用Pandas进行数据处理。
当我们进行编程时,通常需要快速测试并使用一段代码进行一些实验。...---- 使用客户端代码,可以轻松开始调试某些代码 - 只需在任何页面上打开Chrome DevTools,然后开始编写客户端JavaScript。...我们如何使用Node.js代码执行相同的操作,并调试可以访问文件系统和其他Node.js功能的Node模块?实际上,它非常简单。...单击Open dedicated DevTools for NodeNode目标旁边的链接,您将可以在浏览器DevTools中访问Node.js: 确保你点击它,而不是inspect下面的链接,因为当我们重新启动它时工具自动重新连接到...如果问题是为什么我们要做到这一点,这是很简单的:有没有更好的方法来调试任何JavaScript代码比使用DevTools和他们的工具。
一、自定义函数的基础概念(一)什么是自定义函数自定义函数是指由用户根据特定需求编写的函数。在Pandas中,我们可以将自定义函数应用于DataFrame或Series对象,以实现更复杂的数据处理逻辑。...数据转换将数据从一种格式转换为另一种格式,例如日期格式的转换、字符串的编码转换等。二、常见问题及解决方案(一)作用域问题1. 问题描述当我们在自定义函数中引用外部变量时,可能会遇到作用域的问题。...问题描述对于大型数据集,如果自定义函数的执行效率低下,将会导致整个数据处理过程变得非常缓慢。特别是当我们使用apply方法逐行或逐列应用自定义函数时,这种影响更加明显。2....解决方案向量化操作:尽量利用Pandas提供的向量化操作来替代循环结构。例如,对于简单的数学运算,可以直接使用算术运算符对整个列进行操作,而不是编写一个逐行计算的自定义函数。...报错原因当我们尝试访问DataFrame或Series中不存在的列名或索引时,就会触发KeyError。这可能是由于拼写错误、数据结构不一致等原因造成的。2. 解决方法检查列名或索引是否正确。
另一个scraper 当我第一次开始做一些web抓取时,我对这个主题不是特别感兴趣。但是我想说!...选择您想要往返的城市和日期。在选择日期时,请确保选择“+-3天”。我在编写代码时考虑了结果页面,所以如果只想搜索特定的日期,很可能需要做一些调整。...每当我在几分钟内使用get命令超过两三次时,都会出现reCaptcha检查。实际上,您可以自己解决reCaptcha,并在下一次出现之前继续进行您想要的测试。...前3行显示出来,我们可以清楚地看到我们需要的所有内容,但是我们有更好的选择来获取信息。我们需要分别刮取每个元素。 准备起飞吧! 最容易编写的函数是加载更多的结果,所以让我们从这里开始。...我使用了一个简单的方法来分割它们,例如在第一个section_a_list和section_b_list变量中。
假设促销数据存储在一个DataFrame中,看起来像下面这样(实际上不会这么小): 如果你想跟随并自己做示例,以下是用于创建这个DataFrame的Pandas代码: import pandas as...然而,你可能会处理更大的DataFrame(数千或数百万行),这样就不可能进行视觉检查了。 始终牢记缺失值并检查它们。 我们要谈论的第二个悄悄错误是链式索引。...进行此操作的更好(且有保证的)方法是使用loc方法,它保证直接在DataFrame上执行操作。...这是如何使用iloc方法来执行的: promotion.iloc[:4, :] # output promotion_code sales_qty price 0 A2...当我们使用loc方法时,我们多了一行。 原因是使用loc方法时,上限是包含的,因此最后一行(具有标签4的行)被包括在内。 当使用iloc方法时,上限是不包含的,因此索引为4的行不包括在内。
所有编程语言都离不开循环。因此,默认情况下,只要有重复操作,我们就会开始执行循环。但是当我们处理大量迭代(数百万/十亿行)时,使用循环是一种犯罪。您可能会被困几个小时,后来才意识到它行不通。...在后台,它将操作一次性应用于数组或系列的所有元素(不同于一次操作一行的“for”循环)。 接下来我们使用一些用例来演示什么是矢量化。...在使用 Pandas DataFrame 时,这种差异将变得更加显著。 数学运算 在数据科学中,在使用 Pandas DataFrame 时,开发人员使用循环通过数学运算创建新的派生列。...在下面的示例中,我们可以看到对于此类用例,用矢量化替换循环是多么容易。 DataFrame 是行和列形式的表格数据。...让我们看下面的例子来更好地理解它(我们将使用我们在用例 2 中创建的 DataFrame): 想象一下,我们要根据现有列“a”上的某些条件创建一个新列“e” ## 使用循环 import time start
Randy编写这本指南,让SAS用户熟悉Python和Python的各种科学计算工具。...此外,一个单列的DataFrame是一个Series。 像SAS一样,DataFrames有不同的方法来创建。可以通过加载其它Python对象的值创建DataFrames。...与SAS不同,Python解释器正常执行时主要是静默的。调试时,调用方法和函数返回有关这些对象的信息很有用。这有点类似于在SAS日志中使用PUT来检查变量值。...解决缺失数据分析的典型SAS编程方法是,编写一个程序使用计数器变量遍历所有列,并使用IF/THEN测试缺失值。 这可以沿着下面的输出单元格中的示例行。...df.columns返回DataFrame中的列名称序列。 ? 虽然这给出了期望的结果,但是有更好的方法。
确定分析所需的数据 通过API可以获得大量的空气质量数据,当您尝试使用基于网页的查询工具时,您可以开始了解哪种数据集最符合您的兴趣。...稍后,我们将在操作数据时使用Pandas 的其他功能。 io:我们将使用 io 库来解码从API返回的数据。 requests:Requests 库将用于向 EPA.gov 服务器发出API请求。...如前所述,我们无法请求整个州的数据,因此我们需要一种有效的方法来按县逐个请求数据。 为了使代码更具可伸缩性,我们将使用 county.py 来检索要处理的郡列表。...我希望通过请求给定年份的数据来使脚本更容易运行,而无需每次都更新配置文件,因此我只需编写用户输入来获取所需的年份,如下所示: ?...请记住,我们循环遍历给定州的每个县,因此我们需要处理结果,然后构建一个 DataFrame,其中包含州内每个县的所有数据。 ?
当我们使用列表(或其他可迭代对象)传递给.loc或[]索引器时,Pandas在查找标签时可能会遇到缺失的标签,这会导致KeyError。...解决方法方法一:使用.isin()方法过滤标签一种解决方法是使用Pandas的.isin()方法来过滤标签,以确保只选择存在于DataFrame中的标签。...方法二:使用.reindex()方法重新索引另一种解决方法是使用Pandas的.reindex()方法来重新索引,以仅选择存在于DataFrame中的标签。...然后,我们使用.reindex()方法来重新索引DataFrame,仅选择存在于有效标签中的列。...这些方法通过过滤标签或重新索引DataFrame,确保只选择存在于DataFrame中的标签。在处理大量数据时,这些方法将非常有用,并且可以提高代码的鲁棒性和可读性。
pandas的文档中是这样描述的: “快速,灵活,富有表现力的数据结构,旨在使”关系“或”标记“数据的使用既简单又直观。”...其次,它使用不透明对象范围(0,len(df))循环,然后在应用apply_tariff()之后,它必须将结果附加到用于创建新DataFrame列的列表中。....iterrows为DataFrame中的每一行产生(index,series)这样的元组。...这与我们上面的循环操作相比如何?首先,你可能会注意到不再需要apply_tariff(),因为所有条件逻辑都应用于行的选择。因此,你必须编写的代码行和调用的Python代码会大大减少。...比不是Pythonic的循环快315倍,比.iterrows快71倍,比.apply快27倍。 ▍还可以做的更好吗?
当我们运行csv.reader()所有CSV数据变得可访问时。该csvreader.next()函数从CSV中读取一行; 每次调用它,它都会移动到下一行。...我们也可以使用for循环遍历csv的每一行for row in csvreader 。确保每行中的列数相同,否则,在处理列表列表时,最终可能会遇到一些错误。...这次我们将创建一个writer()对象并使用它将我们的数据写入文件,与读取时的方法基本一样。...转换为XML时,可以使用dicttoxml库。...但是XML也有一些基于JSON和CSV的额外功能:您可以使用命名空间来构建和共享结构标准,更好地传承,以及使用XML、DTD等数据表示的行业标准化方法。
首先,一般被认为是“正确”的方法,是使用DataFrame的drop方法,之所以这种方法被认为是标准的方法,可能是收到了SQL语句中使用drop实现删除操作的影响。...['a']没了,这就如同前面用drop方法时参数中使用了inplace=True一样,原地修改。...我们知道,如果用类似df.b这样访问属性的形式,也能得到DataFrame对象的列,虽然这种方法我不是很提倡使用,但很多数据科学的民工都这么干。...但是,当我们执行f.d = 4的操作时,并没有在StupidFrame中所创建的columns属性中增加键为d的键值对,而是为实例f增加了一个普通属性,名称是d。...因此,如果要让f.d与f['d']等效,还必须要在StupidFrame类中添加 __getattr__ 方法,并使用__setattr__方法来处理设置问题(关于这两个方法的使用,请参阅《Python
用字典初始化的系列 有了pandas,我们也可以用字典数据类型来初始化一个系列。这样,我们不会将索引声明为单独的列表,而是使用内置键作为索引。...通常,在使用pandasDataFrame 时,DataFrames将是您将使用的最常用对象。...DataFrame进行比较,并在将其视为一个组时更好地了解地球海洋的平均深度和最大深度。...处理缺失值 通常在处理数据时,您将缺少值。pandas软件包提供了许多不同的方法来处理丢失的数据,这些null数据是指由于某种原因不存在的数据或数据。...我们使用DataFrame.dropna()函数去了下降遗漏值,使用DataFrame.fillna()函数填补缺失值。这将确保您在开始时不会遇到问题。
领取专属 10元无门槛券
手把手带您无忧上云