用Python进行数据可视化你会用什么库来做呢? 今天就来和大家分享Python数据可视化库中的一员猛将——Altair!...借助Altair,我们可以将更多的精力和时间放在理解数据本身及数据意义上,从复杂的数据可视化过程中解脱出来。...这里以名义型变量+数量型变量中的一条来讲解。 如果将数量型变量映射到x 轴,将名义型变量映射到y 轴,依然将柱体作为数据的编码样式(标记样式),就可以绘制条形图。...)中,使用month 提取时间型变量date 的月份,映射在位置通道x轴上,使用汇总函数mean()计算平均降雨量,使用折线作为编码数据的标记样式。...在实例方法encode()中,使用子区通道facet 设置分区,使用year 提取时间型变量date 的年份,作为拆分从2012 年到2015 年每个月的平均降雨量的分区标准,从而将每年的不同月份的平均降雨量分别显示在对应的子区上
点击“博文视点Broadview”,获取更多书讯 用Python进行数据可视化你会用什么库来做呢? 今天就来和大家分享Python数据可视化库中的一员猛将——Altair!...借助Altair,我们可以将更多的精力和时间放在理解数据本身及数据意义上,从复杂的数据可视化过程中解脱出来。...这里以名义型变量+数量型变量中的一条来讲解。 如果将数量型变量映射到x 轴,将名义型变量映射到y 轴,依然将柱体作为数据的编码样式(标记样式),就可以绘制条形图。...)中,使用month 提取时间型变量date 的月份,映射在位置通道x轴上,使用汇总函数mean()计算平均降雨量,使用折线作为编码数据的标记样式。...在实例方法encode()中,使用子区通道facet 设置分区,使用year 提取时间型变量date 的年份,作为拆分从2012 年到2015 年每个月的平均降雨量的分区标准,从而将每年的不同月份的平均降雨量分别显示在对应的子区上
Altair由华盛顿大学的数据科学家Jake Vanderplas编写,目前在GitHub上已经收获超过3000星。...如果我们只调用这个方法,那么所有的数据点都将重叠在一起: ? 这显然是没有意义的,还需要有编码来指定图像的具体内容。...按列分列图片 以汽车的耗油量为例,把所有汽车的数据绘制成一个一维散点图,指定x轴为耗油量: alt.Chart(cars).mark_point().encode(x='Miles_per_Gallon...以耗油量为X轴、马力为Y轴,绘制所有汽车的分布,就得到一张二维图像: alt.Chart(cars).mark_line().encode(x='Miles_per_Gallon',y='Horsepower...数据的分类与汇总 上面的例子中,我们使用的主要是散点图。实际上,Altair还能方便地对数据进行分类和汇总,绘制统计直方图。
Altair由华盛顿大学的数据科学家Jake Vanderplas编写,目前在GitHub上已经收获超过3000星。...如果我们只调用这个方法,那么所有的数据点都将重叠在一起: 这显然是没有意义的,还需要有编码来指定图像的具体内容。...按列分列图片 以汽车的耗油量为例,把所有汽车的数据绘制成一个一维散点图,指定x轴为耗油量: alt.Chart(cars).mark_point().encode( x='Miles_per_Gallon...'Miles_per_Gallon' ) 以耗油量为X轴、马力为Y轴,绘制所有汽车的分布,就得到一张二维图像: alt.Chart(cars).mark_line().encode( x='Miles_per_Gallon...实际上,Altair还能方便地对数据进行分类和汇总,绘制统计直方图。 相比其他绘图工具,Altair的特点在于不需要调用其他函数,而是直接在数轴上进行修改。
matplotlib 的使用非常灵活,这可以说的上是它的一个优点,但是当我们想为图形加一个小小的功能的时候,它的繁琐操作会让我们举步维艰。...决定什么数据应该作为x轴,什么作为y轴;图形中数据标记的大小和颜色。 Encoding. 指定数据变量类型。日期变量、量化变量还是类别变量?...名义变量的集合中,各元素的排序阶数没有任何实际意义,例如大陆集合是欧洲,亚洲,非洲,美洲,大洋洲,他们的次序没有任何数值上的意义;序数变量的集合中,各元素的排序阶数是有实际意义的,例如亚马逊的评论可以是一星...问题的根源在于,我们将 country_id 定义为量化变量,而实际上,它应该是一个类别变量,修改代码如下: # We changed color='country_id:Q' to color='country_id...如果想添加数据提示的功能(tooltip,鼠标悬停在数据上时,会显示该数据的详细信息),只需要增加一行代码: categorical_chart = alt.Chart(data).mark_circle
plotly 使用起来更加简单,但其背后的思路和 matplotlib 一脉相承:你需要定义 fig,描述你需要绘制哪种类型的图表,x 轴,y 轴数据等信息。...我认为封装有几层: 传递给 deneb 要绘制的数据,和绘制这个数据所用的 vega-lite 表达,deneb 将其组合成一个可以展示的 JSON 数据。...传递给 deneb 要绘制的数据,和绘制这个数据所用的 elixir structs,deneb 将其组合并翻译成一个可以展示的 JSON 数据。...在 altair 接口中,已经完全没有 vega-lite 的表达式了,取而代之是对应的 Python 表达式,如果用户撰写的代码有误,Altair 能够清晰地展示错误,帮你定位问题。...既然我定位到问题可能出在 html 上,那么,问题的解决并不麻烦。我只需在合适的地方加入打印,看 IElixir 的输出,一步步缩小问题的范围即可。
Altair库作为Python中的一款强大工具,为用户提供了丰富的图表绘制功能。让我们从一个个例子入手,看看它能做到什么程度的图表。...() 方法将图表的标记类型设置为点状,表示我们要创建一个散点图 .encode() 方法来定义数据的映射关系,将x轴映射到数据中的x列,将y轴映射到数据中的y列 chart.save 会生成一个 html...点的大小,代表不同的 size 列的值 tooltip 参数,使得当鼠标停在泡泡上面时,会出现提示信息 王者 接下来才是 altair 的核心,还是前面的泡泡图,不过可以缩放平移交互: import altair...]) 这行代码创建了一个区域选择器,类型为 interval ,并指定了它仅在 x 轴上生效 scatter_plot = alt.Chart(data).mark_point().encode( #...这样当我们在散点图中选择区域时,下方的柱状图会根据所选择的区域显示相应的数据。
Altair 是一个基于 Vega 和 Vega-Lite 的 Python 可视化库,它提供了一种声明式的方式来创建交互式和高度定制化的图表。什么是声明式数据可视化?...加载数据:使用 pandas 加载包含销售数据的 CSV 文件。创建图表:使用 Altair 创建一个柱状图 (mark_bar()),并通过 encode() 方法指定 x 轴和 y 轴的数据字段。...使用 Altair 创建多系列图表除了简单的柱状图,Altair 还支持创建多系列图表,例如线图或面积图,用于比较不同类别或时间序列数据的趋势。...创建图表:使用 Altair 创建一个堆叠面积图 (mark_area()),通过 encode() 方法指定 x 轴(季度)、y 轴(销售额)和颜色(产品类别)的映射关系。...创建图表:使用 Altair 创建一个柱状图 (mark_bar()),通过 encode() 方法指定 x 轴(年份)、y 轴(销售额)、颜色(产品类别)的映射关系,并添加提示信息。
这幅图是用Python的可视化库Altair绘制的,Altair可以使用强大而简洁的可视化语法快速开发各种统计可视化图表。...用户只需要提供数据列与编码通道之间的链接,例如x轴,y轴,颜色等,其余的绘图细节它会自动处理。 事实上,Altair能做的还有很多,大家可以去官网example gallery观赏 ?...安装、配置、导入Altair 如果你安装的是anaconda(我强烈建议你安装这个IDE),Altair已经内置,无需再安装。...Encoding:编码方式定义了图片显示的各种属性,如每个图片的位置,图片轴的属性等。这部分是最重要的,记住关键的几个就行。...位置通道:定义位置相关属性: x: x轴数值 y: y轴数值 row: 按行分列图片 column: 按列分列图片 通道描述: color: 标记点颜色 opacity: 标记点的透明度 shape:
在这个教程中,我们将更多使用的第一个包括随时间推移(从2004年到2020年)的三个术语的受欢迎程度数据。另外,我添加了一个分类变量(1和0)来演示带有分类变量的图表的功能。...我们也可以用条形显示数据值。...Pandas分析 Pandas分析是一个库,可使用我们的数据生成交互式报告,我们可以看到数据的分布,数据的类型以及可能出现的问题。...另一个最受欢迎的是配对图,它向我们显示了所有变量之间的关系。如果您有一个大数据集,请谨慎使用此功能,因为它必须显示所有数据点的次数与有列的次数相同,这意味着通过增加数据的维数,处理时间将成倍增加。...或者,当我们想共享它们并给其他人探索数据的可能性时。
在这个教程中,我们将更多使用的第一个包括随时间推移(从2004年到2020年)的三个术语的受欢迎程度数据。另外,我添加了一个分类变量(1和0)来演示带有分类变量的图表的功能。...Matplotlib的图表由两个主要部分组成,即轴(界定图表区域的线)和图形(我们在其中绘制轴,标题和来自轴区域的东西),现在让我们创建最简单的图: import matplotlib.pyplot as...基本上,它提供给我们的是更好的图形和功能,只需一行代码即可制作复杂类型的图形。 我们导入库并使用sns.set()初始化图形样式,如果没有此命令,图形将仍然具有与Matplotlib相同的样式。...如果您有一个大数据集,请谨慎使用此功能,因为它必须显示所有数据点的次数与有列的次数相同,这意味着通过增加数据的维数,处理时间将成倍增加。...或者,当我们想共享它们并给其他人探索数据的可能性时。
如果你打算向他人展示你的数据,定制X轴、Y轴和其他绘图元素可能需要大量的努力。这是由于Matplotlib的低级接口造成的。...尽管它没有像Matplotlib那样广泛的集合,但Seaborn可以用更少的代码使流行的绘图,如柱状图、盒状图、热图等看起来更漂亮。...推荐阅读(点击阅读):Pandas+Matplotlib+Plotly,完美解决 Python 数据分析问题 优点 与R相似 如果你熟悉在R中创建绘图,并在使用Python时怀念它的功能,Plotly是一个很好的选择...它允许你用Python实现同样水平的高质量绘图。 Plotly Express尤其突出,因为它只用一行Python代码就能创建令人印象深刻的图表。...Altair建议在处理超过5000个样本的数据集时,在可视化之前对数据进行汇总。处理更大的数据集可能需要额外的步骤来管理数据大小和复杂性。 经验之谈:Altair 是创建复杂统计图表的绝佳选择。
为了可视化任何形式的数据,我们都可能在某个时间点使用过数据透视表和图表,如条形图、直方图、饼图、散点图、折线图、基于地图的图表等。这些很容易理解并帮助我们传达准确的信息。...虽然 Matplotlib 库在语法风格上是命令式的,但 Altair 和 Seaborn 库在方法上都是声明式的,即用户只需要指定要做什么,机器决定它的部分。...) 中,需要额外启用扩展: jupyter nbextension install --sys-prefix --py vega 如果以上方法还不管用(如果你也遇到了同样的问题,并且有了更好的解决方案的...,可以联系云朵君,一起学习),那就建议你使用 Jupyter Lab,并设置: import altair as alt alt.renderers.enable('mimetype') 正常显示就没有问题了...高级绘图 此外,还有其他高级绘图,如棒棒糖或破折号和点图、热图、树状图,可以使用这两个库进行绘制(Seaborn 可能为此需要一些额外的包),但在此比较中这些已被排除在外以保持它简单的。
Chart Object)对象转换 在进行Altair可视化绘制时,我们要将之前读取的的数据转换成可被Altair接受的绘图对象,这时候,我们需要调用Altair库的Chart() 方法将数据转换成Altair.../user_guide/marks.html 在选择完我们的mark对象后,接下来我们要做的就是如何将数据进行映射,比如,我绘制散点图,我需要将数据中的哪一列映射到X轴,哪一列映射到Y轴呢?...比如下面这个例子就是将a列映射到X轴,b列y映射到Y轴的散点图: alt.Chart(data).mark_point().encode( x='a', y='b' ) 更多encode...比如,还是上边的例子,我们希望将b列的均值映射到Y轴上,常规操作是先对数据进行转换计算再进行 可视化绘制,这里我们可以直接通过以下代码完成数据处理-绘图操作: alt.Chart(data).mark_bar...以上内容只是简单对Altair包绘图过程进行了总结,主要都是我在使用该库进行绘图时所认为的关键步骤,可能有所缺漏,更多内容大家可参考Altair官网。
这个功能可以将用户定义的函数应用于值,并返回一个格式整齐的字符串放置在坐标轴上。...现在我们有一个格式化函数,需要定义它并将其应用到x轴。...这样更美观,也是一个很好的例子,展示如何灵活地定义自己的问题解决方案。 我们最后要去探索的一个自定义功能是通过添加注释到绘图。绘制一条垂直线,可以用ax.axvline()。...添加自定义文本,可以用ax.text()。 在这个例子中,我们将绘制一条平均线,并显示三个新客户的标签。下面是完整的代码和注释,把它们放在一起。...这个例子也很好,因为各个坐标轴被解压缩到ax0和ax1。有这些坐标轴轴,你可以像上面的例子一样绘制图形,但是在ax0和ax1上各放一个图。
几乎所有对数据科学感兴趣的人都可能至少使用过一次Matplotlib。 优点 易于解释的数据属性 在分析数据时,快速了解数据分布情况往往非常有用的。...如果你打算向他人展示你的数据,定制X轴、Y轴和其他绘图元素可能需要大量的努力。这是由于Matplotlib的低级接口造成的。...尽管它没有像Matplotlib那样广泛的集合,但Seaborn可以用更少的代码使流行的绘图,如柱状图、盒状图、热图等看起来更漂亮。...优点 与R相似 如果你熟悉在R中创建绘图,并在使用Python时怀念它的功能,Plotly是一个很好的选择。它允许你用Python实现同样水平的高质量绘图。...Altair建议在处理超过5000个样本的数据集时,在可视化之前对数据进行汇总。处理更大的数据集可能需要额外的步骤来管理数据大小和复杂性。 经验之谈:Altair 是创建复杂统计图表的绝佳选择。
这个功能可以将用户定义的函数应用于值,并返回一个格式整齐的字符串放置在坐标轴上。...,需要定义它并将其应用到x轴。...这样更美观,也是一个很好的例子,展示如何灵活地定义自己的问题解决方案。 我们最后要去探索的一个自定义功能是通过添加注释到绘图。绘制一条垂直线,可以用ax.axvline()。...添加自定义文本,可以用ax.text()。 在这个例子中,我们将绘制一条平均线,并显示三个新客户的标签。 下面是完整的代码和注释,把它们放在一起。...这个例子也很好,因为各个坐标轴被解压缩到ax0和ax1。有这些坐标轴轴,你可以像上面的例子一样绘制图形,但是在ax0和ax1上各放一个图。
这个 “ i ” 改变了可视化的整个定义。 只需一行代码,我生成了下面这个散点图。您可以根据需要自定义它。请记住指定模式标记,否则您将获得一些线条。 ?...使用plotly的Python库,您可以使用DataFrame的系列和索引来描述图形,但是使用Cufflinks可以直接绘制它。...with cufflinks Cufflinks使得图表绘制更加容易。您甚至还 可以使用Cufflinks生成令人惊叹的3D图表 。我只用几行代码生成了下面这个3D图表。 ?...声明意味着只需要提供数据列与编码通道之间的链接,例如x轴,y轴,颜色等,其余的绘图细节它会自动处理。声明使Altair变得简单,友好和一致。使用Altair可以轻松设计出有效且美观的可视化代码。...统计可视化最明显的特征是以整洁的Dataframes开始。您还可以将绘图另存为图像或在vega编辑器中打开它以获得更多选项。Altair可能不是最好的,但绝对值得一试。
领取专属 10元无门槛券
手把手带您无忧上云