展开

关键词

卷积神经网络中的Winograd快速卷积算法

目录 写在前面 问题定义 一个例子 F(2, 3) 1D winograd 1D to 2D,F(2, 3) to F(2x2, 3x3) 卷积神经网络中的Winograd 总结 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 随便翻一翻流行的推理框架(加速器),如NCNN、NNPACK等,可以看到,对于卷积层,大家不约而同地采用了Winograd快速卷积算法,该算法出自CVPR 2016 卷积神经网络中的Winograd 要将Winograd应用在卷积神经网络中,还需要回答下面两个问题: 上面我们仅仅是针对一个小的image tile,但是在卷积神经网络中,feature map的尺寸可能很大 在卷积神经网络中,feature map是3维的,卷积核也是3维的,3D的winograd该怎么做? 第二个问题,3维卷积,相当于逐层做2维卷积,然后将每层对应位置的结果相加,下面我们会看到多个卷积核时更巧妙的做法。 这里直接贴上论文中的算法流程: ?

1.5K40

迁移学习之快速搭建【卷积神经网络

前言 卷积神经网络 概念认识:https://cloud.tencent.com/developer/article/1822928 卷积神经网络 简单模型搭建:https://cloud.tencent.com 三、构建模型 常见卷积神经网络(CNN),主要由几个 卷积层Conv2D 和 池化层MaxPooling2D 层组成。卷积层与池化层的叠加实现对输入数据的特征提取,最后连接全连接层实现分类。 [0,1.0]) plt.title('Training and Validation Loss') plt.xlabel('epoch') plt.show() 参考 Tensorflow官网案例 卷积神经网络 概念认识:https://cloud.tencent.com/developer/article/1822928 卷积神经网络 简单模型搭建:https://cloud.tencent.com/developer /article/1822778 卷积神经网络 训练模型遇到过拟合问题,如何解决:https://cloud.tencent.com/developer/article/1822920

52841
  • 广告
    关闭

    腾讯云服务器买赠活动

    腾讯云服务器买赠活动,低至72元1年,买就送,最长续3个月,买2核送4核、买4核送8核

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用tensorflow layers相关API快速构建卷积神经网络

    Layers API介绍 tf.layers包中包含了CNN卷积神经网络的大多数层类型,当前封装支持的层包括: 卷积层 均值池化层 最大池化层 扁平层 密集层 dropout层 BN层 转置卷积层 我们将基于卷积层 首先需要详解的介绍一下卷积层与池化层API与参数。 kernel_size 卷积核的大小,一个整数或者是一个元组 strides=(1, 1), 卷积时候的步长、一个整数或者一个元组,默认是1x1的步长 padding 填充方式,默认valid意思是不够的丢弃 ,如果是same表示不够时候补零 dilation_rate 是否使用膨胀卷积,默认不使用 activation激活函数 use_bias 是否使用增益偏置 kernel_initializer卷积核初始化参数方式 ,包括两个卷积层+两个池化层+两个全链接层+一个输出层。

    70530

    卷积神经网络

    type=2&id=369265&auto=1&height=66"> 卷积神经网络 卷积神经网络,它们也被称作CNNs或着ConvNets,是深层神经网络领域的主力。 下图为卷积神经网络流程图:(这里看不懂没关系) 为了帮助指导你理解卷积神经网络,我们讲采用一个非常简化的例子:确定一幅图像是包含有"X"还是"O"? 这个我们用来匹配的过程就被称为卷积操作,这也就是卷积神经网络名字的由来。 这个卷积操作背后的数学知识其实非常的简单。 具体过程如下: 对于中间部分,也是一样的操作: 为了完成我们的卷积,我们不断地重复着上述过程,将feature和图中每一块进行卷积操作。 以上为卷积神经网络的基本算法思想。

    12720

    卷积神经网络

    卷积神经网络 详解 卷积神经网络沿用了普通的神经元网络即多层感知器的结构,是一个前馈网络。以应用于图像领域的CNN为例,大体结构如图。 卷积层 特征提取层(C层) - 特征映射层(S层)。将上一层的输出图像与本层卷积核(权重参数w)加权值,加偏置,通过一个Sigmoid函数得到各个C层,然后下采样subsampling得到各个S层。 从上例来看,会有如下变换: 全连接层 通 过不断的设计卷积核的尺寸,数量,提取更多的特征,最后识别不同类别的物体。 CNN三大核心思想 卷积神经网络CNN的出现是为了解决MLP多层感知器全连接和梯度发散的问题。 权值共享 不同的图像或者同一张图像共用一个卷积核,减少重复的卷积核。同一张图像当中可能会出现相同的特征,共享卷积核能够进一步减少权值参数。 池化 这些统计特征能够有更低的维度,减少计算量。

    7530

    卷积神经网络图解_卷积神经网络分类

    今天说一说卷积神经网络图解_卷积神经网络分类,希望能够帮助大家进步!!! 文章目录 卷积卷积的优点——参数共享和稀疏连接 池化层——无需学习参数 卷积神经网络案例 梯度下降 经典的神经网络 残差网络 1x1卷积 (Network in Network and 1x1 Convolutions ) Inception网络 迁移学习 神经网络应用 分类定位 目标点检测 滑动窗口的卷积实现 YOLO算法 交并比 非极大值抑制 Anchor Boxes 参考资料:https://blog.csdn.net 池化层——无需学习参数 卷积神经网络案例 梯度下降 经典的神经网络 LeNet-5 ,AlexNet, VGG, ResNet, Inception 疑问: 请教下为什么随着网络的加深,图像的高度和宽度都在以一定的规律不断缩小 神经网络应用 分类定位 目标点检测 滑动窗口的卷积实现 为什么要将全连接层转化成卷积层?有什么好处?

    4410

    卷积神经网络

    概述 神经网络(neual networks)是人工智能研究领域的一部分,当前最流行的神经网络是深度卷积神经网络(deep convolutional neural networks, CNNs), 目前提到CNNs和卷积神经网络,学术界和工业界不再进行特意区分,一般都指深层结构的卷积神经网络,层数从”几层“到”几十上百“不定。 卷积神经网络的特点 局部连接:卷积层输出矩阵上的某个位置只与部分输入矩阵有关,而不是全部的输入矩阵。 共享卷积层 filter 的参数还可以巨幅减少神经网络上的参数。   卷积层的参数要远远小于同等情况下的全连接层。而且卷积层参数的个数和输入图片的大小无关,这使得卷积神经网络可以很好地扩展到更大的图像数据上。

    22730

    卷积神经网络

    一个卷积神经网络,或CNN的简称,是一种类型的分类,在解决这个问题,其过人之处! CNN是神经网络:一种用于识别数据模式的算法。 卷积神经网络概述 如果您以前学习过神经网络,那么您可能会觉得这些术语很熟悉。 那么,什么使CNN与众不同? image.png 卷积神经网络原理解析 卷积神经网络-输入层 输入层在做什么呢? 输入层(最左边的层)代表输入到CNN中的图像。 卷积神经网络-卷积层 image.png 卷积神经网络-池化的运算 这些内核的大小是由网络体系结构的设计人员指定的超参数。 卷积神经网络-relu激活函数 神经网络在现代技术中极为盛行-因为它们是如此的精确! 当今性能最高的CNN包含大量荒谬的图层,可以学习越来越多的功能。

    33082

    卷积神经网络卷积操作

    深度学习是一个目前非常火热的机器学习分支,而卷积神经网络(CNN)就是深度学习的一个代表性算法。 那么为什么卷积神经网络在图片任务上表现这么好呢?一大原因就是其中的卷积操作。那么什么是卷积操作呢? 卷积这一概念来源于物理领域,但在图像领域又有所不同。 我们知道,彩色图像有三个颜色通道:红绿蓝,通常,在卷积神经网络中,是对这三个通道分别进行卷积操作的,而且各通道之间的卷积核也各不相同。 卷积操作有什么好处呢? 而且在卷积神经网络中,卷积核是算法从数据中学习出来的,因此具有很大的自由度,不再需要人工的设计图像算子,因此CNN算法相当强大。 其次,卷积操作大大地降低了参数数量,从而可以避免过拟合问题。在神经网络中,待学习的参数往往数量十分庞大,因此十分容易就“记住”了训练数据,而在测试数据上表现很差,也就是说,发生了过拟合。

    63470

    卷积神经网络

    卷积神经网络 卷积是指将卷积核应用到某个张量的所有点上,通过将 卷积核在输入的张量上滑动而生成经过滤波处理的张量。 介绍的目标识别与分类,就是在前面问题的基础 上进行扩展,实现对于图像等分类和识别。 实现对图像的高准确率识别离不开一种叫做卷积神经网络的深度学习 技术 卷积神经网络主要应用于计算机视觉相关任务,但它能处理的任务并 不局限于图像,其实语音识别也是可以使用卷积神经网络。 简单来说,卷积层是用来对输入层进行卷积,提取更高层次的特征。 ? 在这里插入图片描述 卷积层 三个参数 ksize 卷积核的大小 strides 卷积核移动的跨度 padding 边缘填充 对于图像:使用layers.Conv2D() 具体参数 layers.Conv2D 全连通层 这个层就是一个常规的神经网络,它的作用是对经过多次卷积层和多次池化层所得出来的高级特征进行全连接(全连接就是常规神经网络的性质),算出最后的预测值。

    34120

    卷积神经网络

    卷积神经网络 0.说在前面1.卷积神经网络1.1 卷积层1.2 汇聚层1.3 全连接层2.卷积层实现2.1 前向传播2.2 反向传播3.汇聚层3.1 前向传播3.2 反向传播4.组合层5.三层卷积神经网络 7.2 前向传播7.3 反向传播8.作者的话 0.说在前面 今天来个比较嗨皮的,那就是大家经常听到的卷积神经网络,也就是Convolutional Neural Networks,简称CNNs! 1.卷积神经网络 为了更好的理解后面的代码实现部分,这里再次回顾一下卷积神经网络的构成,主要由三种类型的层来构成:卷积层,汇聚层和全连接层! 1.1 卷积层 为了更好的理解卷积神经网络,这里给出一张图: ? 5.三层卷积神经网络 5.1 架构 首先来了解一下三层卷积神经网络的架构: conv - relu - 2x2 max pool - affine - relu - affine - softmax 5.2

    39220

    卷积神经网络

    目标 本教程的目标是构建用于识别图像的相对较小的卷积神经网络(CNN)。在此过程中,本教程: 重点介绍网络架构,培训和评估的规范组织。 提供一个用于构建更大和更复杂的模型的模板。 同时,该模型足够小,可以快速训练,这对于尝试新想法和尝试新技术是非常理想的。 教程亮点 CIFAR-10教程演示了在TensorFlow中设计更大和更复杂的模型的几个重要结构: 核心数学组件包括卷积 (wiki), 纠正线性激活 (wiki), 最大池 (wiki)和本地响应规范化 模型架构 CIFAR-10教程中的模型是由交替卷积和非线性组成的多层架构。这些层之后是通向softmax分类器的完全连接的层。 该模型的一部分组织如下: 图层名称 描述 conv1 卷积和纠正线性激活。 pool1 最大池。 norm1 本地响应规范化。 conv2 卷积和纠正线性激活。 norm2 本地响应规范化。

    354100

    卷积神经网络

    计算机在表示多结果的分类时,使用One-Hot编码是比较常见的处理方式。即每个对象都有对应的列。

    6220

    卷积神经网络(CNN)与深度卷积神经网络(DCNN)

    目录 一、CNN与DCNN 二、基于pytorch的实现 1.LeNet-5 2.AlexNet ---- 一、CNN与DCNN 卷积神经网络,如:LeNet 深度卷积神经网络,如:AlexNet AlexNet 是第一个现代深度卷积网络模型,首次使用了许多现代深度卷积网络的技术方法,比如,采用ReLu作为非线性激活函数,使用Dropout防止过拟合,是用数据增强提高模型准确率,使用GPU进行并行训练等。 AlexNet与LeNet结构类似,但使用了更多的卷积层和更大的参数空间来拟合大规模数据集ImageNet。 卷积神经网络就是含卷积层的网络。AlexNet是浅层神经网络和深度神经网络的分界线。 (选自书《动手学深度学习》、《神经网络与深度学习》) 二、基于pytorch的实现 参考卷积神经网络之 – Lenet LeNet、AlexNet模型实现(pytorch) 1.LeNet-5: 来自《神经网络与深度学习》 Input -> conv1 (6) -> pool1 -> conv2 (16) -> pool2 -> fc3 (120) -> fc4 (84) -> fc5 (

    13310

    04.卷积神经网络 W1.卷积神经网络(作业:手动TensorFlow 实现卷积神经网络

    文章目录 作业1:实现卷积神经网络 1. 导入一些包 2. 模型框架 3. 卷积神经网络 3.1 Zero-Padding 3.2 单步卷积 3.3 卷积神经网络 - 前向传播 4. 平均池化 - 反向传播 5.2.3 组合在一起 - 反向池化 作业2:用TensorFlow实现卷积神经网络 1. TensorFlow 模型 1.1 创建 placeholder 1.2 初始化参数 1.3 前向传播 1.4 计算损失 1.5 模型 测试题:参考博文 笔记:04.卷积神经网络 W1.卷积神经网络 作业1:实现卷积神经网络 1. 卷积神经网络 ?

    28920

    深度学习 || 23 卷积神经网络 卷积

    卷积神经网络——卷积 卷积 ( Convolution ), 也叫摺积, 是分析数学中一种重要的运算。在信号处理或图像处理中,经常使用一维或二维卷积。 ---- 一维卷积 一维卷积经常用在信号处理中,用于计算信号的延迟累积。 假设滤波器长度为 , 它和一个信号序列 的卷积为 信号序列 和滤波器 的卷积定义为 其中 表示卷积运算。一般情况下滤波器的长度 远小于信号序列长度 。 当滤波器 时, 卷积相当于信号序列的简单移动平均(窗口大小为 )。下图给出了一维卷积示例。滤波器为 连接边上的数字为滤波器中的权重。 ? ---- 二维卷积 卷积也经常用在图像处理中。因为图像为一个两维结构, 所以需要 将一维卷积进行扩展。给定一个图像 和滤波器 般 m<<m, n<<n, 下图给出了二维卷积示例。 ?

    15110

    卷积神经网络详解

    卷积神经网络(Convolutional Neural Networks,CNN)是一种前馈神经网络卷积神经网络是受生物学上感受野(Receptive Field)的机制而提出的。 卷积神经网络有三个结构上的特性:局部连接,权重共享以及空间或时间上的次采样。 这些特性使得卷积神经网络具有一定程度上的平移、缩放和扭曲不变性. 1、关于卷积的简要描述----具体的可以查看相关博文 卷积操作是分析数学中一种重要的运算。我们这里只考虑离散序列的情况。 因此,在卷积神经网络中每一组输出也叫作一组特征映射(Feature Map)。 4 梯度计算 在全连接前馈神经网络中,目标函数关于第l 层的神经元z(l) 的梯度为: ? 在卷积神经网络中,每一个卷积层后都接着一个子采样层,然后不断重复。

    51480

    卷积神经网络简介

    卷积操作 如果您想知道如何通过神经网络学到不同的特征,以及神经网络是否可能学习同样的特征(10个鼻子卷积核将是多余的),这种情况极不可能发生。 在构建网络时,我们随机指卷积核的值,然后在神经网络训练时不断更新。除非所选卷积核的数量非常大,否则很可能不会产生两个相同的卷积核。 一些卷积核的例子,或者也可以叫它过滤器,如下: ? 图片示例如何在卷积神经网络中使用full padding和same padding 填充本质上是使得卷积核产生的特征映射与原始图像的大小相同。 不同层次比较 卷积神经网络中有三种层:卷积层,池化层和全连接层。每层都有不同的参数,可以对这些参数进行优化,并对输入层执行不同的任务。 ? 卷积层的特征 卷积层是对原始图像或深度CNN中的其他特征图应用过滤器的层。这一层包含了整个神经网络中大多数由用户指定的参数。最重要的参数是核的数量和核的大小 ?

    34520

    实战卷积神经网络

    在近些年,深度学习领域的卷积神经网络(CNNs或ConvNets)在各行各业为我们解决了大量的实际问题。但是对于大多数人来说,CNN仿佛戴上了神秘的面纱。 这个过程主要有两个步骤,首先要对图片做卷积,然后找寻模式。在神经网络中,前几层是用来寻找边界和角,随着层数的增加,我们就能识别更加复杂的特征。这个性质让CNN非常擅长识别图片中的物体。 神经网络 简要介绍下神经网络神经网络的每个单元如下: ? 对应的公式: ? 该单元也可以被称作是Logistic回归模型。 当将多个单元组合起来并具有分层结构时,就形成了神经网络模型。其对于的结构图如下: ? 其对应的公式如下: ? CNN是一种特殊的神经网络,它包含卷积层、池化层和激活层。 卷积层 要想了解什么是卷积神经网络,你首先要知道卷积是怎么工作的。想象你有一个5*5矩阵表示的图片,然后你用一个3*3的矩阵在图片中滑动。

    53560

    卷积神经网络NIN

    概述 在传统的CNN网络中,使用卷积(Convolution)操作来提取感受野中的特征,卷积操作是由一个线性变换与非线性激活函数组成,为了能增强CNN网络的局部辨识能力,2014年Network In NIN的卷积层 在传统的CNN网络中,卷积层的操作包括卷积操作,非线性变换(如使用ReLU激活函数),具体过程如下图所示: 卷积层的操作是在feature map进行卷积和非线性变换,得到新的feature 为了能增强CNN网络的局部辨识能力,NIN中在卷积层中的卷积+非线性变换后采用了多层神经网络的结构,进一步增强模型的局部建模能力,具体过程如下图所示: 这样一个卷积+非线性变换+mlp+mlp就组成了新的卷积层 ,在NIN中称为mlp卷积层,与之前的卷积层对比如下图所示: 上述的mlp等价于卷积核大小为 的卷积操作+非线性变换 2.2. : 其中,上图中紫色的部分即为卷积核大小为 的卷积操作,由一个卷积conv和两个cccp组成MLP卷积层。

    4030

    扫码关注腾讯云开发者

    领取腾讯云代金券