学习
实践
活动
工具
TVP
写文章

大安全时代,安全产品如何构建护城河?

2017年1月-7月,360互联网安全中心累计监测到移动端用户感染恶意程序1.3人次,平均每天恶意程序感染量达到了61.5万人次;新增恶意程序样本483.9万个,平均每天截获新增手机恶意程序样本近2.3 一个简单的例子是,促销短信并不总是讨人厌,尤其是在双十一、双十二这样的大促前夕,用户反而期待收到感兴趣品牌的促销信息。 然而,作为移动安全的基本功之一——短信拦截功能,却往往是一刀切地对促销短信予以拦截。显然,这是不符合用户体验提升的。而如何有选择的拦截促销短信,就成了考量移动安全平台AI能力与否的一环。 传统的依靠号码库实现的诈骗识别已不能满足日益复杂多变的诈骗形式和套路,尤其是以勒索软件为代表的恶意软件逐渐呈爆发态势,危害巨大。 一方面是人工智能技术驱动下的场景分析与识别,与用户进行实时的交互,并针对用户的使用行为进行机器训练,进而可以做到对诈骗等不安全事件更精准的识别;另一方面,则是在此基础上,结合态势感知对诈骗溯源分析,综合各方面数据

21030

活动促销必备|双十一你守护 Ta,天御守护你

年少时,课程比较少,与几个室友,看到优惠就点击,看到促销就抢购,遇到双十一还找人代替抢购,只需花10-20元不等就可以请专业刷单代抢成功抢到价值上百元的东西,不到五分之一的价格,很是划算(当然随着这个行业的壮大 针对电商、O2O、P2P、游戏、支付等行业在促销活动中恶意刷取优惠福利这样一种“薅羊毛”行为的团队,我们叫做“羊毛党”。一不小心,企业就会蒙受像上述截图那些案例里的经济损失。 “羊毛党”获益图示 ? 天御能为你们做什么呢 腾讯云天御防刷服务,在原有组合策略的基础上实现了新一代智能防刷引擎,依托腾讯海量黑产数据提供的行为样本,通过组合矩阵最大程度的识别羊毛党的对抗行为。 通过腾讯云合作伙伴的实际验证,天御防刷服务的恶意识别率高于96%。 天御有活动防刷、注册保护、登录保护、消息过滤、图片鉴黄、验证码、反欺诈几大服务,其中天御活动防刷服务针对电商、O2O、P2P、游戏等不同行业的营销和支付场景的恶意行为,具备风险拦截和识别的能力。

54640
  • 广告
    关闭

    热门业务场景教学

    个人网站、项目部署、开发环境、游戏服务器、图床、渲染训练等免费搭建教程,多款云服务器20元起。

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    关于机器学习在网络安全中的五大误解

    有趣的是,在当时人们都认为该算法将很快导致“强”人工智能的出现。即,智能的思考能力、独立思考并可以解决那些默认编程程式外任务的人工智能。 可随后就是“弱”人工智能的时代,它可以解决一些创造性的任务,比如识别图片、预测天气、玩象棋等。 误解三:机器学习——做一次就够了 恶意软件检测和人脸识别在概念上的区别,脸永远是脸,在这方面永远也不会有什么改变。 因为通过客户端的恶意样本的平均数量要比反病毒实验室收集到的恶意样本数量小得多。客户端会因为没有收集到样本进行学习而丧失应对能力。 问题是大多数同家族的恶意软件都是由一个恶意程序修改而来的。例如 Trojan-Ransom.Win32.Shade 是一个拥有超过三万个恶意样本的家族。

    32950

    关于机器学习在网络安全中的五大误解

    有趣的是,在当时人们都认为该算法将很快导致“强”人工智能的出现。即,智能的思考能力、独立思考并可以解决那些默认编程程式外任务的人工智能。 可随后就是“弱”人工智能的时代,它可以解决一些创造性的任务,比如识别图片、预测天气、玩象棋等。 误解三 机器学习——做一次就够了 恶意软件检测和人脸识别在概念上的区别,脸永远是脸,在这方面永远也不会有什么改变。 因为通过客户端的恶意样本的平均数量要比反病毒实验室收集到的恶意样本数量小得多。客户端会因为没有收集到样本进行学习而丧失应对能力。 问题是大多数同家族的恶意软件都是由一个恶意程序修改而来的。例如 Trojan-Ransom.Win32.Shade 是一个拥有超过三万个恶意样本的家族。

    55220

    深度学习:能击败欧洲围棋冠军,还能防恶意软件

    Deep Instinct的学习方法将恶意软件样本分解为大量的小“碎片”,恶意软件从而可以进行映射,就像是基因组序列便是由成千上万更小的序列组合构成。 这些被“分解”的样本仍是二进制位字符串,用于训练神经网络进行系统地识别。在进行了数百万次计算之后,神经网络运行于一个GPU集群中,最终得出一个能够指向终点的静态神经网络结果。 Deep Instinct恶意软件识别率远超传统安全公司 Göttingen大学举行的对16000个恶意软件样本进行识别测试中,来自西门子CERT、Bit-Defender、McAfee、Trend(趋势科技 )、AVG、卡巴斯基、Sophos以及其他安全公司平均识别率为61%,而Deep Instinct对于恶意软件的识别率则高达98.86%。 一些恶意软件样本自主突变,而其功能并没有受到影响。PDF恶意软件的识别率是99.7%,可执行文件的检测率为99.2%。

    32170

    扫码时代来临 再一次证实了域名存在的必要性!

    前几天有一位域名投资人在微博发了如下图片: {45112E2A-6DFC-4A14-8AFD-D2D48016ECD4}.png   在这张文字图片中,从人工智能识别的角度来阐述了域名安全性高的特性 的确,从互联网时代过渡到移动互联网时代,再到如今人工智能、云计算、大数据、信息化....多个“新时代”并存,如今一部手机就能识别二维码、小程序,可能就会有人问了:域名还有啥用?    木马程序、扣费软件等植入二维码,恶意引导、欺骗消费者的现象也是时有发生。    再拿开头文字图片中内容来讲,即便人工智能时代,机器能识别二维码内容,但同样也无法在识别二维码之前就判断内容安全,也需要扫码之后才能判定。 相比之下,域名就显得安全多了,如果人工智能识别的是域名,就可以在很大程度上避免这个问题。   举些例子:看到jd.com你就知道是京东、看到taobao.com你就会反应这是淘宝....

    49450

    机器学习在安全攻防场景的应用与分析

    此外还会通过搜集反馈回来的失败样本,以及人工打码的标定数据,来实时训练和更新识别网络,不断迭代训练进行优化,进一步提高神经网络模型的识别能力。 由于恶意用户仅占总体用户的少部分,具有异常样本“量少”和“与正常样本表现不一样”的两个特点,且不依赖概率密度,因此此异常检测模型不会导致高维输入的下溢出问题。 该模型可识别异常用户盗号、LBS/加好友、欺诈等行为。随着样本增加,恶意请求的uin、类型、发生时间通过分析端通过线下人工分析和线上打击,达到良好的检测效果。 在恶意代码识别方面,区别传统的黑白名单库、特征检测、启发式等方法机器学习的安全应用从反病毒的代码分类、恶意文件检测、恶意URL的网页代码识别等 在社工安全防范方面,区别传统的技术与业务经验分析、安全宣传 ,因此恶意访问、攻击样本的不充分,导致模型训练后的检测准确率有待提高。

    4.4K80

    AI被攻击者滥用后,是人工智能还是“人工智障”?

    一份由学术界、社会团体以及行业人士所撰写的报告《人工智能恶意使用(Malicious Use of Artificial Intelligence)》指出,任何科技都有其双面性,在大力发展AI技术的时候 在这种干扰下,原本精确的人工智能,瞬间就沦为“人工智障”。 试想如果有人恶意制造这样的对抗样本去挑战我们身边的AI系统,结果会有多可怕呢? 犯罪分子也能够随时从面部识别模型中逃脱? 如果存在别有用心的人,将马路上的交通指示牌替换,明明是右转的标志,自动驾驶系统缺识别为直行,极其容易酿成交通事故。 未来,AI技术或将从恶意软件的自动化攻击,进化为自动化决策,即能够根据被感染系统的参数进行智能调整、自我繁殖,攻击会变得更加静默和危险。 一旦进入到受感染的系统中,恶意软件还能够安全地学习系统的环境知识,比如受感染设备通信的内部设备,使用的端口和协议,以及账户信息等。因此,由智能化带来的威胁程度也将成倍增加。

    13310

    加密恶意流量优秀检测思路分享

    摘要 近年来,随着机器学习、深度学习等人工智能技术的迅猛发展,其在图像识别、语音识别和自然语言处理等领域已经得到大规模应用,可以为传统方法很难解决或无法适用的问题提供有效的方案,也已经成为网络安全领域中的热门研究方向 ,比如将人工智能应用于恶意加密流量的检测就是一种行之有效的方法。 二、总体架构 该方法从数据包级、流级和主机级三个不同层次分别提取行为特征构建多个模型来提升对黑白样本识别能力,一部分模型使用多维特征进行综合分析,还有一部分模型使用黑白样本区分度较大且置信度较高的单维特征缓解多维特征中潜在的过拟合和误报问题 作者也尝试了使用流级的包长分布特征进行分类器训练,考虑到恶意流量样本中也包含与正常服务的通信,但又无法识别其中的良性流,所以只将包含一条流的样本拿出来作为训练集,最终将不包含任何恶意流的流量样本分类为正常 除了统计和机器学习方法外,《基于深度学习的物联网恶意软件家族细粒度分类研究》验证了深度学习在流量识别方向也具有很好的应用前景,充分展现了人工智能赋能网络安全领域的可行性。

    1.1K20

    你关心小程序火不火,我们关心它够不够安全

    事中拦截 多层防御体系,全面护航   小程序电商经常会面临活动中DDoS、web恶意流量攻击和羊毛党盗刷等黑产行为,造成营销金大量流失。 腾讯基于21年在营销风控和web业务安全能力的经验积累,帮助商家智能识别、拦截web攻击,精准判别并过滤营销欺诈行为。 案例:  永辉生活小程序使用了天御防刷服务,依托腾讯海量黑产数据提供的行为样本和实时策略系统,每年帮助永辉累计识别近百万恶意帐号,节约近千万线上促销费用。

    28930

    AISecOps - XAIGen技术解析:模型知识抽取促进模型可信任

    ,并通过聚类和优化的LCS算法,有效识别恶意流量中的扫描流量特征(包含同质载荷内容),有效提升规则的准确率。 该分类器可基于决策树、循环神经网络等机器学习或深度学习模型构建,以完成在识别恶意流量等文本分类任务。 进一步,根据采样恶意流量载荷,进行字节级别的聚类,以将恶意流量中的扫描流量识别出来:扫描流量指包含同质载荷内容的流量集合,在聚类过程中将形成聚类簇。 在检测模型识别该载荷内容为webshell的情况下,使用LIME算法能够得到模型将该载荷样本识别恶意webshell的关键词及其贡献程度的置信度值。 评估数据集(评估集)包含当前批次恶意流量载荷样本(采样率βm),以及正常样本(可与感知阶段检测模型使用相同训练数据集,采样率βn-his),以及与当前批次恶意流量在同一时间窗口内的正常样本(采样率βn-cur

    26330

    4.基于机器学习的恶意代码检测技术详解

    《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。 浙大团队分享AI对抗样本技术 [当人工智能遇上安全] 2.清华张超老师 GreyOne和Fuzzing漏洞挖掘各阶段进展总结 [当人工智能遇上安全] 3.安全领域中的机器学习及机器学习恶意请求识别案例分享 (3)性能评估 下面是衡量机器学习模型的性能指标,首先是一幅混淆矩阵的图表,真实类别中1代表恶意样本,0代表非恶意样本,预测类别也包括1和0,然后结果分为: TP:本身是恶意样本,并且预测识别恶意样本 FP:本身是恶意样本,然而预测识别为非恶意样本,这是误分类的情况 FN:本身是非恶意样本,然而预测识别恶意样本,这是误分类的情况 TN:本身是非恶意样本,并且预测识别为非恶意样本 然后是Accuracy 其中,TPRate表示分类器识别出正样本数量占所有正样本数量的比值,FPRate表示负样本数量占所有负样本数量的比值。

    24730

    3.安全领域中的机器学习及机器学习恶意请求识别案例分享

    《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。 5.完整代码 四.总结 前文推荐: [当人工智能遇上安全] 1.人工智能真的安全吗? 浙大团队分享AI对抗样本技术 [当人工智能遇上安全] 2.清华张超老师 GreyOne和Fuzzing漏洞挖掘各阶段进展总结 [当人工智能遇上安全] 3.安全领域中的机器学习及机器学习恶意请求识别案例分享 该模型可识别异常用户盗号、LBS/加好友、欺诈等行为。随着样本增加,恶意请求的uin、类型、发生时间通过分析端通过线下人工分析和线上打击,达到良好的检测效果。 一步一个脚印前行,接下来希望通过深度学习实现更多的恶意代码识别和对抗样本

    38630

    如何科学合理薅FreeBuf活动“羊毛”

    这个活动主要就是上传三种类型的样本:暗链、恶意URL、WebsShell通信样本,系统对样本进行判定并给予一定的分值积分,积分还可以用来抽奖。 ? 恶意URL的提交还是很方便的,网上可找到的现成资源也很多,提交的人也很多,我猜目前大部分提交的样本都是这一类的。 样本对抗研究 在提交数据的时候,我也很好奇这个智能机器人的识别模型原理,耐不住手痒,自然是要研究一番的。 我尝试对这个智能识别模型做攻击,类似于样本对抗的方式对模型做欺骗。 但这样做了两天后我就发现,经过这样处理的样本智力分非常低,或者被提示样本重复。应该是识别模型被优化了或是真的学习到了攻击模式。 第二点,要多提交复杂不易被识别样本才行。

    50850

    “618”大促落下帷幕,我们守住了2.7亿张优惠券

    作为上半年规模最大的促销活动,各大电商平台给出了最大的优惠力度,成绩也都再创新高。 为保障大促顺利进行,腾讯云提前调度资源、组织驻场团队,提供了全方位的保障方案。 腾讯安全也一路护航,本次“618大促”期间,电商平台的“活动防刷”总防护次数达到16亿,防护住2.7亿张优惠券,保证不被恶意薅走。 面对充满不确定性的流量峰值,腾讯云CDN有超高的带宽储备,足以应对促销活动时爆发性的用户访问请求,快速伸缩的负载均衡CLB可以实时调整集群规模以适应促销流量的增长,无需人工介入。 通过充足、优质的 BGP 防护资源,结合持续进化的“自研+AI 智能识别”清洗算法,保障用户业务的稳定、安全运行。防护场景覆盖游戏、互联网、视频、金融、政府等行业。 关于腾讯安全天御 专注解决“欺诈预防”和“风险识别”问题,以人工智能为核心,以腾讯庞大情报为基础,结合腾讯20年综合积累,以及近10年黑灰产对抗经验,打造 AI 时代的智能风控服务。

    34130

    吐血整理!万字原创读书笔记,数据分析的知识点全在这里了

    ,也出现在物联网、人工智能等人和物的监控、识别、联通、互动等智能化应用中) 外部公开数据: 政府和相关机构提供的公开数据; 竞争对手主动公开的数据; 行业协会或相关平台组织提供的统计、资讯数据; 第三方的组织或个人披露的与企业相关的数据 过抽样和欠抽样 增加少数类样本的数量或减少多数类样本的数量 最为常用 正负样本的惩罚权重 少数样本类权重高,多数样本类权重低 不需要对样本进行额外处理,思路更加简单和高效 组合/集成方法 每次训练时使用全部少数类样本和部分多数类样本 分析场景:异常订单识别、风险客户预警、黄牛识别、贷款风险识别、欺诈检测、技术入侵等。 6. 时间序列分析 常用算法:移动平均(MA)、指数平滑(ES)、差分自回归移动平均模型(ARIMA)三大类。 异常订单检测:用来识别在订单(尤其是促销活动中的订单)中的异常状态,目的是找到非普通用户的订单记录,例如黄牛订单、恶意订单、商家刷单等。其实现主要是基于监督式分类算法和基于非监督式的算法这两类方法。 提升数据化运营价值度的5种途经 数据源(不只有结构化数据) 自动化(简历自动工作机制) 未卜先知(建立智能预警模型) 智能化(向商业智能和人工智能的方向走) 场景化(将数据嵌入运营环节之中)

    38110

    人脸识别再曝安全漏洞:清华创业团队推出全球首个AI模型「杀毒软件」

    平台生成的对抗样本「噪音」能够极大干扰两大主流人脸比对平台的识别结果。 「对抗样本」成为「AI 病毒」 我们测试了国内几家科技巨头的人脸识别模型,对抗样本的「伪装」效果均比较明显。 瑞莱智慧的研发人员告诉我们:这种对抗样本同样也可以使亚马逊、微软等人脸识别平台的服务出现严重的识别错误。 在人脸解锁手机和支付系统如此普遍的今天,对抗样本方法的进步让我们开始担心财产与隐私安全。 对抗样本可以导致人工智能系统被攻击和恶意侵扰,产生与预期不符乃至危害性结果,对于人脸识别、自动驾驶等特定领域,可能造成难以挽回的人员和财产损失,对抗样本已经成为人工智能系统可能面临的新型「病毒」。 另一方面,对抗样本等算法漏洞检测存在较高的技术壁垒,目前市面上缺乏自动化检测工具,而大部分企业与组织不具备该领域的专业技能来妥善应对日益增长的恶意攻击。

    31030

    5.基于机器学习算法的主机恶意代码识别研究

    《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。 八.总结 前文推荐: [当人工智能遇上安全] 1.人工智能真的安全吗? 浙大团队分享AI对抗样本技术 [当人工智能遇上安全] 2.清华张超老师 GreyOne和Fuzzing漏洞挖掘各阶段进展总结 [当人工智能遇上安全] 3.安全领域中的机器学习及机器学习恶意请求识别案例分享 恶意代码分析是一种解剖恶意代码的艺术,了解恶意代码是如何工作、如何识别,以及如何战胜或消除它。 现阶段,恶意代码呈现变种数量多、传播速度快、影响范围广的特点。 杨轶等通过分析污点传播的过程,识别不同的恶意代码行为间控制指令和数据的依赖关系,从而比较恶意代码的相似性。Imran 等通过隐马尔可夫模型对待测样本的动态行为特征进行描述,并借助机器学习算法实现分类。

    19110

    “购物狂欢节”如何应对“羊毛党”

    例如,某个IP是恶意的IP,那么该IP上可能会有一些正常的用户,比如大网关IP。再比如,黑产通过ADSL拨号上网,那么就会造成恶意与正常用户共用一个IP的情况。 模型训练最大的难度在于样本的均衡性问题,拆分成子问题,就不需要考虑不同账号类型之间的数据配比、均衡性问题,大大降低了模型训练时正负样本比率的问题。 3.逻辑的健壮性。 不仅仅要有注册数据,还要有登录,以及账号的使用的数据,这样我们才能更好的识别恶意。 所以想要做风控和大数据的团队,一定要注意在自己的产品上多埋点,拿到足够多的数据,先沉淀下来。 既然代理IP的识别如此重要,那我们就以代理IP为例来谈下腾讯识别代理IP的过程。 白分类器主要用来识别正常用户,黑分类器识别虚假用户。 Q:风险概率的权重指标是如何考虑的? 先通过正负样本进行训练,并且做参数显著性检查;然后,人工会抽查一些参数的权重,看看跟经验是否相符。

    12.9K61

    7.基于机器学习的安全数据集总结

    《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。 URL malicious-URLs 在Github上面一个 使用机器学习去检测恶意URL的项目 ,里面有一个训练集,有做标记是正常的URL还是恶意的URL 内容类型: 文本样本 是否特征化:否 使用范围 内容类型:图像样本 使用范围:图像分类、恶意家族分类 推荐理由:个人感觉这是图像分类实验的基础,恶意样本转换灰度图进行恶意家族分类实验也都可以基于此实验拓展 下载地址:https://github.com 内容类型:图像样本 使用范围:图像分类、恶意家族分类 推荐理由:个人感觉这是图像分类实验的基础,恶意样本转换灰度图进行恶意家族分类实验也都可以基于此实验拓展。 发布机构:麻省理工学院 内容类型:图像样本 数据大小:31.2GB 使用范围:图像分类、自然灾害识别 推荐理由:个人感觉该数据集对于对抗样本、AI和安全结合的案例有帮助 下载地址:https://hyper.ai

    38020

    扫码关注腾讯云开发者

    领取腾讯云代金券