Spring Cloud Schema Registry 是一个用于管理和存储Avro、JSON Schema等数据格式的注册中心。它可以帮助你在微服务架构中统一管理数据格式,确保数据的一致性和兼容性。
Confluent KafkaAvroSerializer 是Confluent平台提供的序列化器,用于将数据序列化为Avro格式,并与Kafka集成。它依赖于Confluent Schema Registry来获取和验证Avro schema。
可以将独立的Spring Cloud Schema Registry与Confluent的KafkaAvroSerializer一起使用,但需要注意以下几点:
spring-cloud-schema-registry
和confluent-kafka-avro-serializer
。以下是一个简单的示例代码,展示如何配置Spring Cloud Schema Registry和Confluent KafkaAvroSerializer:
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-schema-registry</artifactId>
<version>1.0.0</version>
</dependency>
<dependency>
<groupId>io.confluent</groupId>
<artifactId>kafka-avro-serializer</artifactId>
<version>6.2.0</version>
</dependency>
spring:
cloud:
schema:
registry:
url: http://localhost:8081
username: admin
password: admin
confluent:
kafka:
schema:
registry:
url: http://localhost:8081
username: admin
password: admin
import io.confluent.kafka.serializers.KafkaAvroSerializer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import java.util.HashMap;
import java.util.Map;
@Configuration
public class KafkaProducerConfig {
@Value("${kafka.bootstrap-servers}")
private String bootstrapServers;
@Bean
public KafkaProducer<String, String> kafkaProducer() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, KafkaAvroSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, KafkaAvroSerializer.class);
props.put("schema.registry.url", "http://localhost:8081");
props.put("schema.registry.username", "admin");
props.put("schema.registry.password", "admin");
return new KafkaProducer<>(props);
}
}
import io.confluent.kafka.serializers.KafkaAvroDeserializer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import java.util.HashMap;
import java.util.Map;
@Configuration
public class KafkaConsumerConfig {
@Value("${kafka.bootstrap-servers}")
private String bootstrapServers;
@Bean
public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, KafkaAvroDeserializer.class);
props.put("schema.registry.url", "http://localhost:8081");
props.put("schema.registry.username", "admin");
props.put("schema.registry.password", "admin");
props.put("specific.avro.reader", true);
return props;
}
}
通过以上配置和示例代码,你可以将独立的Spring Cloud Schema Registry与Confluent的KafkaAvroSerializer一起使用,确保数据格式的一致性和兼容性。
领取专属 10元无门槛券
手把手带您无忧上云