在现代机器学习框架中,像TensorFlow,公开可用的数据集和预先训练的图像识别模型,可以在不应用过多的工作和花费过多的时间和资源的情况下,以相当好的准确性解决问题。...有两种可能的方法来减缓训练示例缺乏的情况: 将犬种图像数据集与另一个更大的图像数据集(如ImageNet),并在合并的例子上训练CNN; 在更大的数据集上接受预先训练的深层神经网络,切入它,附加一个额外的...每个映像都被输入到初始[Inception]模型,并将其带有图像的输出与和其他注释存储在一起。这简化了训练,因为我们不需要在培训期间为每个示例计算初始输出,而是预先计算以备使用。...setup.sh脚本还下载并提取谷歌的初始模型,将其表示为冻结的TensorFlow图。...如果你认为自己是一个爱狗的人,你可以继续问问你的模型下图中的狗是什么品种:)在我的情况下,我得到了以下答案: 迷你品犬 结论 正如我们所看到的那样,即使没有足够的训练图像和/或计算资源,如果你可以使用预训练的深层神经网络和现代机器学习库
每个人都参与其中 每一个主流框架,如Tensorflow,Keras,PyTorch,MXNet等,都提供了预先训练好的模型,如Inception V3,ResNet,AlexNet等,带有权重: Keras...事实上,他们报告的准确率(截至2019年2月)通常高于实际的准确率。 当部署在服务器上或与其他Keras模型按顺序运行时,一些预先训练好的Keras模型会产生不一致或较低的精度。...了解(并信任)这些基准测试非常重要,因为它们允许你根据要使用的框架做出明智的决策,并且通常用作研究和实现的基线。 那么,当你利用这些预先训练好的模型时,需要注意什么呢?...首先,你需要检查你的数据与模型所训练的原始数据集(在本例中为ImageNet)有多相似。你还需要知道特征是从何处(网络的底部、中部或顶部)迁移的,因为任务相似性会影响模型性能。...2、你如何预处理数据? 你的模型的预处理应该与原始模型相同。几乎所有的torchvision模型都使用相同的预处理值。
图2:转移学习神经网络模型的模型架构,红色表示固定的权重和偏差,绿色表示仅训练最终层的权重和偏差。 在转学习中,我们从整个网络的预训练权重开始。...现在我们知道 InceptionV3 至少可以确认我正在吃什么,让我们看看我们是否可以使用基础数据表示重新训练并学习新的分类方案。 如上所述,我们希望冻结模型的前 n-1 层,然后重新训练最后一层。...下面,我们加载预训练模型; 然后,我们使用 TensorFlow 方法 .get_layer() 从原始模型中获取输入和倒数第二个(瓶颈)图层名称,并使用这两个层作为输入和输出构建新模型。...接下来,我们需要将预训练模型中的每一层设置为无法训练 - 基本上我们正在冻结这些层的权重和偏差,并保留已经通过 Inception 原始的,费力的训练学到的信息。...总结 通过利用预先构建的模型体系结构和预先学习的权重,迁移学习允许你使用学习的给定数据结构的高级表示,并将其应用于您自己的新训练数据。
图2:转移学习神经网络模型的模型架构,红色表示固定的权重和偏差,绿色表示仅训练最终层的权重和偏差。 在转学习中,我们从整个网络的预训练权重开始。...现在我们知道InceptionV3至少可以确认我正在吃什么,让我们看看我们是否可以使用基础数据表示重新训练并学习新的分类方案。 如上所述,我们希望冻结模型的前n-1层,然后重新训练最后一层。...下面,我们加载预训练模型; 然后,我们使用TensorFlow方法 .get_layer() 从原始模型中获取输入和倒数第二个(瓶颈)图层名称,并使用这两个层作为输入和输出构建新模型。...接下来,我们需要将预训练模型中的每一层设置为无法训练 - 基本上我们正在冻结这些层的权重和偏差,并保留已经通过Inception原始的,费力的训练学到的信息。...总结 通过利用预先构建的模型体系结构和预先学习的权重,迁移学习允许你使用学习的给定数据结构的高级表示,并将其应用于您自己的新训练数据。 回顾一下,你需要3种成分来使用迁移学习: 1.
引言迁移学习和领域自适应是深度学习中的两个重要概念。迁移学习旨在将已在某个任务上训练好的模型应用于新的任务,而领域自适应则是调整模型以适应不同的数据分布。...本文将通过一个详细的教程,介绍如何使用Python实现迁移学习和领域自适应。环境准备首先,我们需要安装一些必要的库。我们将使用TensorFlow和Keras来构建和训练我们的模型。...pip install tensorflow数据集准备我们将使用两个数据集:一个是预训练模型使用的数据集(如ImageNet),另一个是目标领域的数据集(如CIFAR-10)。...我们将冻结预训练模型的大部分层,只训练顶层的全连接层。...我们将使用一个域分类器来区分源域和目标域的数据,并通过对抗性训练使特征提取器生成的特征在两个域之间不可区分。
对于开发者来说,在移动设备上运行预先训练好的模型的能力意味着向边界计算(edge computing)迈进了一大步。[译注:所谓的边界计算,从字面意思理解,就是与现实世界的边界。...TensorFlow for Poets 2:谷歌的TFLite教程,重新训练识别花卉的模型。 这些示例和教程更侧重于使用预先训练的模型或重新训练现有的模型。但是用户自己的模型呢?...从一个简单的模型开始 首先,我想选择一个未经过预先训练或转换成.tflite文件的TensorFlow模型,理所当然我选择使用MNIST数据训练的简单的神经网络(目前支持3种TFLite模型:MobileNet...幸运的是,Google在其模型库(model zoo)中开放了大量研究模型和可用模型,这其中包括MNIST训练脚本。我们将在本节中引用该代码,大致浏览一下,熟悉它。...TensorFlow格式 - 理解每种工具和操作如何生成不同的文件格式。如果能自动获取SavedGraph并将其转换(缩减中间的一堆步骤)会很棒,但我们还没有做到。
嵌入 单词 上下文的 网络激活 变化 结构 (RNN / Transformer) 层 预训练目标 分析方法 1:可视化 保持嵌入/网络激活静态或冻结 可视化嵌入 ?...在适应过程中需要训练哪些权重以及遵循什么时间表 更多信号:弱监督、多任务和集成 如何为目标任务获取更多的监督信号 4.1 结构 两个通用选项: 保持预训练模型内部不变 在顶部添加分类器,在底部添加嵌入,...主要问题:调整还是不调整(预先训练好的重量)? 不改变预先训练的重量 Feature extraction (预训练的)权重被冻结 ? 线性分类器是在预训练的表示上进行训练的 ?...下游应用程序 在本节中,我们将沿两个方向探索下游的应用和实际考虑: 迁移学习在自然语言处理中的各种应用是什么 文档/句子分类、令牌级分类、结构化预测和语言生成 如何利用多个框架和库来实现实际应用 Tensorflow.../bert/ 我们使用通常的Tensorflow工作流:创建包含核心模型和添加/修改元素的模型图 加载检查点时要注意变量分配 ?
除了上面列举的框架外还有不少学习框架,这里就不一一列举,本课程的重点是选择其中一个框架,然后学习如何使用,就像第一节课讲的那样,我们按着先学会使用,再理解内部原理的路线去学习。...谷歌已经在 TensorFlow 上发布了多个预先训练好的机器学习模型,他们可以自由使用。 模型的选择 框架选好后,接下来我们就要对模型进行选择了。...一个模型由两部分组成,第一部分是用于生成或者说训练模型的代码,包含如何提取和处理输入数据的特征,如何构建神经网络(如神经网络有几层)等;第二部分就是通过这个代码加上大量数据训练出来的模型二进制文件,叫做...平台的选择 大家都知道现在IT领域最火的两个技术,一个是人工智能,另外一个是物联网(IOT)。...Android是大部分物联网设备未来的内在系统,而TensorFlow又是业内标准的训练框架,这两个系统的整合将会产生巨大的化学反应。本系列课程我们选择安卓平台进行手把手的学习。
为减少障碍,Google发布了Tensorflow对象检测API和Tensorflow Hub等开源工具,使人们能够利用那些已经广泛使用的预先训练的模型(例如Faster R-CNN,R-FCN和SSD...本文旨在展示如何通过以下步骤使用TensorFlow的对象检测API训练实时视频对象检测器并将其快速嵌入到自己的移动应用中: 搭建开发环境 准备图像和元数据 模型配置和训练 将训练后的模型转换为TensorFlow...csv等) models — 一个文件夹,用于存储所有预先训练的模型及其配置文件。 tf-models — 一个文件夹,其中包含Tensorflow中克隆的模型代码,将在建模中使用。...模型配置和训练 下载预训练的模型 正如在开始时提到的,将使用预先训练的模型,而不是从头开始设计模型,检测模型动物园收集了广泛使用的预先训练的模型的列表。...需要注意的一些文件是: model.ckpt — 模型的检查点(预先训练的模型/部分训练的模型),带有估算器,以进行进一步的训练。
多标签分类:有两个或两个以上类别,每个观测值同时属于一个或多个类别。应用示例是医学诊断,其中需要根据患者的体征和症状开出一种或多种治疗方法。通过类推,可以设计用于汽车诊断的多标签分类器。...如何建立可预测电影类型的深度学习模型?看看可以在TensorFlow 2.0中使用的一些技术! ?...使用TF.Hub迁移学习 可以在称为迁移学习的过程中使用经过预先训练的模型,而不是从头开始构建和训练新模型。...Aknowledgement TensorFlow核心团队在共享预训练的模型和有关如何将其与tf.kerasAPI 一起使用的教程方面做得很好。...模型训练与评估 在准备好数据集并通过在预先训练的模型之上附加多标签神经网络分类器来构成模型之后,可以继续进行训练和评估,但首先需要定义两个主要功能: 损失函数:您需要它来度量过渡批次的模型误差(成本)。
上期我们一起学习了 深度学习三人行(第3期)---- TensorFlow从DNN入手 简单的介绍了ANN(人工神经网络),并训练了我们第一个DNN(深度神经网络),但是一个非常浅的DNN,只有两个隐藏层...因此还需要引入两个参数来做相应的缩放和平移。BN的算法如下: ? 其中μB是这个batch数据的均值,σB是标准差,γ是缩放因子,β是平移因子,ε是一个很小的数,防止除数为0,称为平滑因子。...2.2 复用tensorflow模型 前面训练模型时,我们用restore将模型进行了保存。 ?...2.3 从其他框架复用 如果已经使用另一个框架训练了模型,你会需要手动导入权重,然后将它分配给合理的变量。下面例子展示了如何使用从另一个框架训练的模型的第一个隐藏中复制权重和偏差。 ?...通常来说训练一个新的DNN,将模型的权重冻结是一个很好的做法,如果浅层权重固定了,那么深层权重会变得容易训练。为了在训练阶段冻结浅层网络,最简单的方法是给训练的优化器一个除了浅层网络变量的变量列表。
除了上面列举的框架外还有不少学习框架,这里就不一一列举,本课程的重点是选择其中一个框架,然后学习如何使用,就像第一节课讲的那样,我们按着先学会使用,再理解内部原理的路线去学习。...谷歌已经在 TensorFlow 上发布了多个预先训练好的机器学习模型,他们可以自由使用。 模型的选择 框架选好后,接下来我们就要对模型进行选择了。...TensorFlow 教程里面用到的模型 先说一下本课程中模型的定义,一个模型由两部分组成,第一部分是用于生成或者说训练模型的代码,包含如何提取和处理输入数据的特征,如何构建神经网络(如神经网络有几层...平台的选择 大家都知道现在IT领域最火的两个技术,一个是人工智能,另外一个是物联网(IOT)。...Android是大部分物联网设备未来的内在系统,而TensorFlow又是业内标准的训练框架,这两个系统的整合将会产生巨大的化学反应。本系列课程我们选择安卓平台进行手把手的学习。
笔记本 3.使用预先训练的网络 在上一节中,训练了一个简单的CNN,它给出了约70%的准确度。...通过使用更大,更复杂的架构,可以轻松做得更好。有许多开源预训练网络可用于我们的类似图像分类任务。一个预先训练模型是以前训练的大型数据集,通常在大型图像分类任务保存的网络。...在编译和训练模型之前冻结卷积基是很重要的,通过设置来实现base_model.trainable = False。通过冻结可以防止在训练期间更新基础模型中的权重。...但是,仍然可以通过执行微调来改善此模型的性能。 微调预先训练好的网络 在上一步中,仅在Inception V3基础模型的基础上训练了几层。训练期间未预先更新预训练基础网络的权重。...它还使能够对卷积神经网络模型进行有效的训练。 使用tf.keras不仅从头开始构建CNN,而且还能够重复使用预先训练好的网络,在短时间内在鲜花数据集上获得更高的准确度。
我将借鉴自己的经验,列出微调背后的基本原理,所涉及的技术,及最后也是最重要的,在本文第二部分中将分步详尽阐述如何在 Keras 中对卷积神经网络模型进行微调。 首先,为什么对模型进行微调?...另一个问题是,如果我们的数据集很小,那么在小数据集上微调预先训练的网络可能会导致过拟合,特别是如果网络的最后几层是全连接层,就像 VGG 网络的情况。...例如,ImageNet 上经过预先训练的网络带有 1000 个类别的 softmax 层。...确保执行交叉验证,以便网络具有很好的泛化能力。 2. 使用较小的学习率去训练网络。因为我们期望预先训练的权重相比随机初始化权重要好很多,所以不希望过快和过多地扭曲这些权重。...通常的做法是使此刻的初始学习率比从头训练的初始学习率小 10 倍。 3. 还有一个常用的做法是冻结预训练网络的前几层的权重。这是因为前几层捕获了与我们的新问题相关的曲线和边缘等通用特征。
/developer/article/1822778 本篇文章带大家熟悉“迁移学习”的开发流程,介绍如何使用预先训练好的神经网络,结合实际的功能需求,来实现一些图像任务;比如:实现对猫和狗的图像进行分类...预先训练好的神经网络,通常称为“预训练模型”,它在大型数据集上进行训练,取得业界认可的效果,开源给广大开发者使用的模型。本文主要介绍在keras中的关于图像任务的开源模型。...预训练模型的优点 1)模型在足够大的数据集中训练,通常是业界的通用模型(比如:图像视觉的模型); 2)预训练模型的权重是已知了,往往不用再花时间去训练;只需训练我们自定义的网络结构即可。...base_model,对预先训练好的模型,不再重新进行训练了 base_model.trainable = False 查看一下base_model的网络结构 base_model.summary( )...base_model,对预先训练好的模型,不再重新进行训练了 base_model.trainable = False # 查看一下base_model的网络结构 base_model.summary
一般就俩情况,一个是真的没装,还有一个是装到其它环境了,当前激活的环境不是自己装的环境。 问:为什么提示说No module named ‘tensorflow’ ? 答:同上。...同时这也是迁移学习的思想,因为神经网络主干特征提取部分所提取到的特征是通用的,我们冻结起来训练可以加快训练效率,也可以防止权值被破坏。 在冻结阶段,模型的主干被冻结了,特征提取网络不发生改变。...没有好的参数调节能力和算力,无法使得网络正常收敛。 如果一定要从0开始,那么训练的时候请注意几点: 不载入预训练权重。 不要进行冻结训练,注释冻结模型的代码。...同时这也是迁移学习的思想,因为神经网络主干特征提取部分所提取到的特征是通用的,我们冻结起来训练可以加快训练效率,也可以防止权值被破坏。 在冻结阶段,模型的主干被冻结了,特征提取网络不发生改变。...没有好的参数调节能力和算力,无法使得网络正常收敛。 如果一定要从0开始,那么训练的时候请注意几点: 不载入预训练权重。 不要进行冻结训练,注释冻结模型的代码。
本文,我们主要会详细介绍聊天机器人在文本方面的运作。 在这篇文章中,我们将看到如何使用深度学习模型训练聊天机器人用我们所希望的方式在社交媒体上进行对话。...摘要显示,尽管机器翻译已经做的很好,但Seq2Seq却模型能更好的完成各种各样的NLP的任务。 Seq2Seq模型由两个主要部件组成,一个是编码器RNN,另一个是解码器RNN。...然而,由于我们有这么多的单词和缩写,而不是在典型的预先训练的单词向量列表中,因此,生成我们自己的单词向量对于确保单词正确表达是至关重要的。 为了生成单词向量,我们使用了word2vec模型的经典方法。...关于如何创建和训练word2vec模型的更详细的概述,请查看我的一个好友Varma罗汉的博客。...https://www.tensorflow.org/tutorials/seq2seq 跟踪培训进展 这个项目的一个有趣的地方是,能看到网络训练时,响应是如何发生变化的。
,使得训练更深的网络成为可能。...最重要的两个例子就是BN和Dropout层。对BN层,训练时我们需要用mini batch的均值和方差来缩放输入。在推导时,我们用训练时统计到的累计均值和方差对推导的mini batch进行缩放。...如上图所示,假设我们从Conv K+1层开始微调模型,冻结左边1到k层。...这些workaround包括:将模型分成两部分,一部分冻结,一部分不冻结,冻结部分只过一遍提取特征,训练时只训练不冻结的部分。为了增加说服力,我会给出一些例子来展示这个补丁的真实影响。...2.5 这个修复在真实数据集上表现如何 我们用Keras预训练的ResNet50,在CIFAR10上开展实验,只训练分类层10个epoch,以及139层以后5个epoch。
该目录包含了几种广泛使用的卷积神经网络(CNN)图像分类模型的训练和测试代码。它包含脚本,允许您从头开始训练模型或从预训练(pre-train)的模型进行fine-tune。...您可以轻松地使用这些数据集进行任意模型的训练,如下所示。 我们还包括一个 jupyter notebook,它提供了如何使用TF-Slim进行图像分类的工作示例。...但是这样就意味着模型的训练将是一个需要大量计算的过程,需要几天甚至几周的时间,我们提供了各种网络的预训练模型,所辖所示,这些CNN网络已经在ImageNet数据集上训练过。...从已存在的checkpoint Fine-tuning一个模型 我们经常希望从预先训练的模型开始,并对其进行Fine-tuning,而不是从头开始训练。...如果然后要将结果模型与您自己的或预先训练的检查点一起用作mobile model,则可以运行freeze_graph以使用以下内容将变量内嵌为常量: bazel build tensorflow/python
领取专属 10元无门槛券
手把手带您无忧上云