首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

SFFAI分享 | 王玫:自然环境下的多种族人脸:利用信息最大化自适应网络去减少种族偏差【附PPT,视频】

种族偏见是生物特征识别中的一个重要问题,但在人脸识别领域还没有得到深入的研究。在这篇论文中,我们首先提供了一个名为“自然环境下的多种族人脸”(RFW)的数据库。利用该数据库,我们验证了四个商业API和四个当前最先进算法都存在种族偏见。然后,我们进一步提出利用深度无监督域自适应算法来解决种族偏差,并提出了一个深度信息最大化自适应网络(IMAN)。在算法中,我们以白种人作为源域,其他种族作为目标域来缓解这种偏差。这种无监督的方法一方面在域层面减小源域和目标域的全局分布,另一方面在类别层面学习有区分性的目标域特征。此外,我们还提出了一种新的互信息损失,在没有标签的情况下,进一步提高了网络输出的鉴别性。通过在RFW、GBU和IJB-A数据库上进行的大量实验表明,IMAN学习到的特征在不同种族和不同数据库上有很好的泛化性。

01

周志华《机器学习》第2章部分笔记

①误差(error):学习器的预测输出与样本的真实输出之间的差异 ②训练误差(training error)或经验误差(empirical error):在训练集上的误差 ③测试误差(test error):在测试集上的误差 ④泛化误差(generalization error):学习器在所有新样本上的误差 ⑤过拟合(overfitting):学习能力过于强大,把训练样本自身的一些特点当成所有潜在样本都会有的一般性质,导致泛化能力下降 ⑥欠拟合(underfitting):学习能力太差,对训练样本的一般性质尚未学好 在过拟合问题中,训练误差很小,但测试误差很大;在欠拟合问题中,训练误差和测试误差都比较大。目前,欠拟合问题容易克服,如在决策树中扩展分支,在神经网络中增加训练轮数;但过拟合问题是机器学习面临的关键障碍。 ⑦模型选择:在理想状态下,选择泛化误差最小的学习器。

03

周志华团队和蚂蚁金服合作:用分布式深度森林算法检测套现欺诈

源 | AI科技大本营 互联网公司每天都面临着处理大规模机器学习应用程序的问题,因此我们需要一个可以处理这种超大规模的日常任务的分布式系统。最近,以集成树为构建模块的深度森林(Deep Forest)算法被提出,并在各个领域取得了极具竞争力的效果。然而,这种算法的性能还未在超大规模的任务中得到测试。近日,基于蚂蚁金服的参数服务器系统“鲲鹏”及其人工智能平台“PAI”,蚂蚁金服和南京大学周志华教授的研究团队合作开发了一种分布式的深度森林算法,同时提供了一个易于使用的图形用户界面(GUI)。 为了满足现实世界

09

【翻译】HyNet: Learning Local Descriptor with Hybrid Similarity Measure and Triplet Loss

最近的研究表明,局部描述符学习得益于L2归一化的使用,然而,文献中缺乏对这种效应的深入分析。在本文中,我们研究了L2归一化如何影响训练期间的反向传播描述符梯度。根据我们的观察,我们提出了一个新的局部描述符HyNet,它可以在匹配方面带来最先进的结果。HyNet引入了一种混合相似性度量,用于度量三态边际损失,一个正则化项约束描述符范数,以及一种新的网络体系结构,该体系结构对所有中间特征映射和输出描述符执行L2正则化。在包括补丁匹配、验证和检索在内的标准基准上,HyNet大大超过了以前的方法,并且在3D重建任务上优于完整的端到端方法。代码和模型可在https://github.com/yuruntian/HyNet上找到。

02

Gradient Harmonized Single-stage Detector

虽然两级检测器取得了巨大的成功,但是单级检测器仍然是一种更加简洁和高效的方法,在训练过程中存在着两种众所周知的不协调,即正、负样本之间以及简单例子和困难例子之间在数量上的巨大差异。在这项工作中,我们首先指出,这两个不和谐的本质影响可以用梯度的形式来概括。此外,我们提出了一种新的梯度协调机制(GHM)来对冲不协调。GHM背后的原理可以很容易地嵌入到交叉熵(CE)等分类损失函数和smooth l1 (SL1)等回归损失函数中。为此,我们设计了两种新的损失函数GHM-C和GHM-R来平衡梯度流,分别用于anchor分类和bounding box细化。MS COCO的消融研究表明,无需费力的超参数调整,GHM-C和GHM-R都可以为单级探测器带来实质性的改进。在没有任何附加条件的情况下,该模型在COCO test-dev set上实现了41.6 mAP,比目前最先进的Focal Loss(FL) + SL1方法高出0.8。

01

机器学习的跨学科应用——训练测试篇

在机器学习问题中,要求模型执行两个相互矛盾的任务:1. 最小化训练数据集上的预测误差 2. 最大化其对看不见的数据进行泛化的能力。根据模型,损失函数和评估方法的测试方式不同,模型可能最终会记住训练数据集(不良结果),而不是学数据的充分表示(预期结果)。这称为过拟合,通常会导致模型的泛化性能下降。过拟合可能会在各种模型上发生,尽管通常会在较复杂的模型上,例如随机森林,支持向量机和神经网络。 在模型训练期间,请在训练和验证集上观察训练指标,例如您的损失输出和r得分。比如,在训练神经网络时,您可以使用学习曲线在训练过程中跟踪每个周期的验证错误。理想情况下,随着模型的训练,验证和训练误差将会减少,您的训练误差将接近零,但这并不是我们关心的指标!您应该更密切注意验证集的错误。当您的验证错误再次增加而训练错误继续减少时,您可能会记住训练数据,从而过度拟合了数据。 过拟合可能会对模型的泛化能力产生不利的影响。也就是说,为新的和看不见的数据返回不合理的输出预测,从而使测试数据集的效果较差。如果您发现模型非常容易拟合训练数据,请考虑降低模型的复杂度或者使用正则化。

01

机器学习笔记P1(李宏毅2019)

从最左上角开始看: Regression(回归):输出的目标是一个数值。如预测明天的PM2.5数值。 接下来是Classification(分类):该任务的目标是将数据归为某一类,如进行猫狗分类。 在分类任务中,将涉及线性和非线性的模型。其中,非线性的模型包含了Deep-Learning,SVM,决策树,K-NN等等。 结构化学习相对于回归或者分类来说,输出的是一个向量,结构化学习的输出可以是图像、语句、树结构等等。目前最火的的GAN就是一个典型的结构化学习样例。 回归、分类和结构化学习可以归为有监督任务,除此之外还有半监督任务以及无监督任务。 有监督模型对于模型的输入全部都是有标签的数据,半监督模型对于模型的输入,部分是有标签的数据,部分是没有标签的数据。无监督模型对于模型的输入全部都是没有标签的数据。 除此之外,因为手动对数据进行标注的代价很大,因此可以考虑将其他领域以及训练好的模型迁移到自己的任务中来,这叫做迁移学习。 目下,还有另外一个当下很火的技术叫做Reinforcement Learning(增强学习)。增强学习和监督学习的主要区别是:在有监督学习中,我们会对数据给出标签,然后拿模型得到的结果与结果进行对比,将结果进行一些处理之后用来优化模型。而在增强学习中,我们不会给模型正确的答案,取而代之的是我们会给模型一个分数,以此来表示模型结果的好坏程度。在增强学习中,模型并不知道为什么不好,只知道最终的结果评分。

02
领券