首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

强烈推荐一个Python库!制作Web Gui也太简单了!

效果展示: 2、选择元素 NiceGui 有不同的选择元素,如切换框、单选框和复选框。 • toggle():此函数可以生成一个切换框,我们在其中通过包含值到标签的映射的字典值列表传递选项。...• radio():这类似于 toggle() 函数,但在这里我们可以选择单选选项。 • select():此函数生成一个下拉列表以选择特定选项。与上述函数相比,此函数的输入和存储的输出值相同。...上面代码中的函数包括: • input():使用此函数时,将创建一个空文本框,用户可以在其中键入数据。它有一个名为“ label ”的变量,它告诉用户它期望的输入类型。...行列表是包含上述列值的字典列表。这里使用字段名称,我们在字典中提供field:value对。然后使用 ui.table() 函数,我们将表格显示到 UI。在这里我们可以给表格命名。...row_key 的列名包含唯一值。 效果展示: 带有 NiceGui的 Pandas DataFrame 使用 table() 函数本身可以显示 Pandas 数据。

3.4K11

PyWebIO,让 Pandas 原地起飞的神器!

大家好,我是早起。 我想很多人用 Python 就是用 pandas 进行数据分析,并且你大概率每天就用到 pandas 那几个函数处理结构大致相似的数据。...,虽然后台已经将数据文件读取了,但默认不是用 pandas 读取的很难操作,所以我们可以用下面的代码将文件名字读取出来之后,再用 pandas 进行读取。...在 PyWebIO 中展示表格一般像下面一样,将数据转换为多级列表,再用过markdown渲染出来 但是如果再写一个转换函数,就略显麻烦,幸运的是 pandas 可以直接输出html,所以我们可以将数据先转化为...(put_html(df1.to_html(border=0))) 通过循环这样的操作,我们给每一个按钮都添加一个功能函数,函数内写入 pandas 操作部分与前端显示部分就能完成第一部分数据处理的操作...这就用到 pin 方法,可以简单的按照异步的思路去理解,也就是说我们先创建一个输入框和一个提交按钮,再用回调函数进行绑定 put_markdown('## 数据查询') pin.put_input('res

1.3K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Mark一下】46个常用 Pandas 方法速查表

    导读:Pandas是日常数据分析师使用最多的分析和处理库之一,其中提供了大量方便实用的数据结构和方法。但在使用初期,很多人会不知道: 1.它能提供哪些功能? 2.我的需求应该用哪个方法?...你可以粗略浏览本文,了解Pandas的常用功能;也可以保存下来,作为以后数据处理工作时的速查手册,没准哪天就会用上呢~ 1创建数据对象 Pandas最常用的数据对象是数据框(DataFrame)和Series...例如可以从dtype的返回值中仅获取类型为bool的列。 3 数据切片和切块 数据切片和切块是使用不同的列或索引切分数据,实现从数据中获取特定子集的方式。...常用高级函数 方法用途示例示例说明map将一个函数或匿名函数应用到Series或数据框的特定列In: print(data2['col3'].map(lambda x:x*2)) Out: 0...2 1 2 2 0 Name: col3, dtype: int64对data2的col3的每个值乘2apply将一个函数或匿名函数应用到Series或数据框In: print(data2

    4.9K20

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    我希望用Python取代几乎所有的excel功能,无论是简单的筛选还是相对复杂的创建并分析数据和数组。 我将展示从简单到复杂的计算任务。强烈建议你跟着我一起做这些步骤,以便更好地理解它们。...3、导入表格 默认情况下,文件中的第一个工作表将按原样导入到数据框中。 使用sheet_name参数,可以明确要导入的工作表。文件中的第一个表默认值为0。...使用index_col参数可以操作数据框中的索引列,如果将值0设置为none,它将使用第一列作为index。 ?...1、从“头”到“脚” 查看第一行或最后五行。默认值为5,也可以自定义参数。 ? 2、查看特定列的数据 ? 3、查看所有列的名字 ? 4、查看信息 查看DataFrame的数据属性总结: ?...4、将总列添加到已存在的数据集 ? 5、特定列的总和,使用loc函数 ? 或者,我们可以用以下方法: ? 6、用drop函数删除行 ? 7、计算每列的总和 ?

    8.4K30

    加载大型CSV文件到Pandas DataFrame的技巧和诀窍

    现实世界中的大多数数据集通常都非常庞大,以千兆字节为单位,并包含数百万行。在本文中,我将讨论处理大型CSV数据集时可以采用的一些技巧。...在本文中,我将通过使用一个示例数据集来向你演示。...因此,这个数据集是用来说明本文概念的理想数据集。 将CSV文件加载到Pandas DataFrame中 首先,让我们从加载包含超过1亿行的整个CSV文件开始。...检查列 让我们检查数据框中的列: df.columns 现在,你应该意识到这个CSV文件没有标题,因此Pandas将假定CSV文件的第一行包含标题: Index(['198801', '1', '103...加载特定列 由于CSV文件非常庞大,你可能会问自己的下一个问题是,你真的需要所有列吗?

    47810

    Python3分析Excel数据

    有两种方法可以在Excel文件中选取特定的列: 使用列索引值 使用列标题 使用列索引值 用pandas设置数据框,在方括号中列出要保留的列的索引值或名称(字符串)。...设置数据框和iloc函数,同时选择特定的行与特定的列。如果使用iloc函数来选择列,那么就需要在列索引值前面加上一个冒号和一个逗号,表示为这些特定的列保留所有的行。...pandas将所有工作表读入数据框字典,字典中的键就是工作表的名称,值就是包含工作表中数据的数据框。所以,通过在字典的键和值之间迭代,可以使用工作簿中所有的数据。...有两种方法可以从工作表中选取一组列: 使用列索引值 使用列标题 在所有工作表中选取Customer Name和Sale Amount列 用pandas的read_excel函数将所有工作表读入字典。...然后,用loc函数在每个工作表中选取特定的列,创建一个筛选过的数据框列表,并将这些数据框连接在一起,形成一个最终数据框。

    3.4K20

    如果 .apply() 太慢怎么办?

    如果我们想要将相同的函数应用于Pandas数据帧中整个列的值,我们可以简单地使用 .apply()。Pandas数据帧和Pandas系列(数据帧中的一列)都可以与 .apply() 一起使用。...但是,你是否注意到当我们有一个超大数据集时,.apply() 可能会非常慢? 在本文中,我们将讨论一些加速数据操作的技巧,当你想要将某个函数应用于列时。...将函数应用于单个列 例如,这是我们的示例数据集。...我告诉你,对于一个数百万行的数据框,需要 20 多分钟。 我们是否能够找到更高效的方法来执行这项任务呢? 答案是肯定的。...编写一个独立的函数,可以将NumPy数组作为输入,并直接在Pandas Series(数据帧的列)的 .values 上使用它。 为了方便起见,这是本文中的全部Jupyter笔记本代码。

    29710

    Python3分析CSV数据

    pandas提供loc函数,可以同时选择特定的行与列。...基本过程就是将每个输入文件读取到pandas数据框中,将所有数据框追加到一个数据框列表,然后使用concat 函数将所有数据框连接成一个数据框。...如果你需要平行连接数据,那么就在concat 函数中设置axis=1。除了数据框,pandas 中还有一个数据容器,称为序列。你可以使用同样的语法去连接序列,只是要将连接的对象由数据框改为序列。...,然后使用数据框函数将此对象转换为DataFrame,以便可以使用这两个函数计算列的总计和均值。...因为输出文件中的每行应该包含输入文件名,以及文件中销售额的总计和均值,所以可以将这3 种数据组合成一个文本框,使用concat 函数将这些数据框连接成为一个数据框,然后将这个数据框写入输出文件。

    6.7K10

    Pandas库常用方法、函数集合

    Pandas是Python数据分析处理的核心第三方库,它使用二维数组形式,类似Excel表格,并封装了很多实用的函数方法,让你可以轻松地对数据集进行各种操作。...这里列举下Pandas中常用的函数和方法,方便大家查询使用。...,适合将数值进行分类 qcut:和cut作用一样,不过它是将数值等间距分割 crosstab:创建交叉表,用于计算两个或多个因子之间的频率 join:通过索引合并两个dataframe stack: 将数据框的列...“堆叠”为一个层次化的Series unstack: 将层次化的Series转换回数据框形式 append: 将一行或多行数据追加到数据框的末尾 分组 聚合 转换 过滤 groupby:按照指定的列或多个列对数据进行分组...: 替换字符串中的特定字符 astype: 将一列的数据类型转换为指定类型 sort_values: 对数据框按照指定列进行排序 rename: 对列或行进行重命名 drop: 删除指定的列或行 数据可视化

    31510

    pandas 入门 1 :数据集的创建和绘制

    分析数据- 我们将简单地找到特定年份中最受欢迎的名称。 现有数据- 通过表格数据和图表,清楚地向最终用户显示特定年份中最受欢迎的姓名。...#导入本教程所需的所有库#导入库中特定函数的一般语法: ## from(library)import(特定库函数) from pandas import DataFrame , read_csv import...我们可以检查所有数据是否都是数据类型整数。将此列的数据类型设置为float是没有意义的。在此分析中,我不担心任何可能的异常值。...要意识到除了我们在“名称”列中所做的检查之外,简要地查看数据框内的数据应该是我们在游戏的这个阶段所需要的。随着我们在数据分析生命周期中的继续,我们将有很多机会找到数据集的任何问题。...与该表一起,最终用户清楚地了解Mel是数据集中最受欢迎的婴儿名称。plot()是一个方便的属性,pandas可以让您轻松地在数据框中绘制数据。我们学习了如何在上一节中找到Births列的最大值。

    6.1K10

    【Python篇】PyQt5 超详细教程——由入门到精通(中篇一)

    4.2 信号与槽的基本用法 我们可以通过以下步骤使用信号与槽机制: 创建一个控件(如按钮、文本框等)。 连接控件的信号到一个槽函数(通常是你定义的函数)。 当信号触发时,调用相应的槽函数来执行操作。...你可以将数据组织为行和列,类似于 Excel 表格或者 pandas 的 DataFrame。在应用程序中,表格控件非常适合展示结构化数据,如数据库查询结果、文件数据等。...setItem(row, column, QTableWidgetItem(value)) 通过这个方法,你可以将数据插入到表格的某个单元格中。...通过 pandas 的强大数据处理能力和 QTableWidget 的可视化展示功能,我们可以轻松将数据展示在应用程序中。...关键点: QTableWidget 是一个强大的表格控件,适合展示结构化数据。 pandas 提供了灵活的数据处理能力,可以将 DataFrame 数据轻松导入到 QTableWidget 中。

    1.9K23

    PandasGUI:使用图形用户界面分析 Pandas 数据帧

    相同的命令是: pip install pandasgui 要在 PandasGUI 中读取 文件,我们需要使用show()函数。让我们从将它与 pandas 一起导入开始。...(titanic) 这是我们的数据框,我们可以滚动查看数据。...可以看到表示 NaN 值的空单元格。可以通过单击单元格并编辑其值来编辑数据。只需单击特定列即可根据特定列对数据框进行排序。在下图中,我们可以通过单击fare 列对数据框进行排序。...titanic.describe() 在 PandasGUI 中,可以转到统计部分并获取每列的统计信息。...除了这些,还可以创建箱线图、3d 散点图、线图等。如果您想快速概览数据,从检查汇总统计数据到绘制数据,PandasGUI 是一个很好的工具,可以轻松完成,无需代码。

    3.9K20

    用python的pandas打开csv文件_如何使用Pandas DataFrame打开CSV文件 – python

    大家好,又见面了,我是你们的朋友全栈君。 有一个带有三列数据框的CSV格式文件。 第三栏文字较长。...但是用打开文件没有问题 with open(‘file.csv’, ‘r’, encoding=’utf-8′, errors = “ignore”) as csvfile: 我不知道如何将这些数据转换为数据帧...我发现R语言的relaimpo包下有该文件。不幸的是,我对R没有任何经验。我检查了互联网,但找不到。这个程序包有python端口吗?如果不存在,是否可以通过python使用该包?...我陷入了将’-‘字符串解析为本地节点js脚本的问题。render.js:#!...我注意到,如果应用程序被强制关闭(通过错误或通过任务管理器结束),则会收到sqlite3错误(sqlite3.OperationalError:数据库已锁定)。

    11.7K30

    30 个 Python 函数,加速你的数据分析处理速度!

    为了更好的学习 Python,我将以客户流失数据集为例,分享 「30」 个在数据分析过程中最常使用的函数和方法。...我们减了 4 列,因此列数从 14 个减少到 10 列。 2.选择特定列 我们从 csv 文件中读取部分列数据。可以使用 usecols 参数。...通过将 isna 与 sum 函数一起使用,我们可以看到每列中缺失值的数量。...df[['Geography','Exited','Balance']].sample(n=6).reset_index(drop=True) 17.将特定列设置为索引 我们可以将数据帧中的任何列设置为索引...我发现使用 Pandas 创建基本绘图更容易,而不是使用其他数据可视化库。 让我们创建平衡列的直方图。 ? 26.减少浮点数小数点 pandas 可能会为浮点数显示过多的小数点。

    9.4K60

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    df.sort_values("col1", inplace=True) 数据输入和输出 1. 利用值构造一个数据框DataFrame 在Excel电子表格中,值可以直接输入到单元格中。...过滤 在 Excel 中,过滤是通过图形菜单完成的。 可以通过多种方式过滤数据框,其中最直观的是使用布尔索引。...列的选择 在Excel电子表格中,您可以通过以下方式选择所需的列: 隐藏列; 删除列; 引用从一个工作表到另一个工作表的范围; 由于Excel电子表格列通常在标题行中命名,因此重命名列只需更改第一个单元格中的文本即可...提取第n个单词 在 Excel 中,您可以使用文本到列向导来拆分文本和检索特定列。(请注意,也可以通过公式来做到这一点。)...查找和替换 Excel 查找对话框将您带到匹配的单元格。在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。

    19.6K20

    独家 | 2种数据科学编程中的思维模式,了解一下(附代码)

    警告信息让我们了解到如果我们在使用pandas.read_csv()的时候将low_memory参数设为False的话,数据框里的每一列的类型将会被更好地记录。...在不同的思维模式中切换 假设我们在运行函数处理所有来自借贷俱乐部的数据集的时候报错了,部分潜在的原因如下: 不同的文件当中列名存在差异 超过50%缺失值的列存在差异 数据框读入文件时,列的类型存在差异...如果我们确定我们的数据管道需要更为弹性化并且能够处理数据特定的变体时,我们可以将我们的探索和管道的逻辑再结合到一起。...这是一些将管道改得更为弹性的方式,按推荐程度降序排列: 使用可选参数、位置参数和必需参数 在函数中使用if / then语句以及使用布尔输入值作为函数的输入 使用新的数据结构(字典,列表等)来表示特定数据集的自定义操作...这个管道可以扩展到数据科学工作流程的所有阶段。

    57730

    【强强联合】在Power BI 中使用Python(2)

    dataframe格式数据,“loc=1”代表在第一列数据后插入一列,列名是“add_100”,值是“Value”的值+100,第一行是1,add_100列第一行就是101,以此类推: ?...再比如,我们想提取数据的某列,比如上面这张表的“key2”列,我们可以点击运行Python脚本,并写入如下的代码: ?...这种数据如果已经导入到Power BI中,在powerquery里是没有办法直接进行处理的,这时候就可以调用Python的re正则表达式了: import re import json # 自定义获取文本电子邮件的函数...在IDE中运行无误后复制到powerquery的Python脚本编辑器中: ? 点击确定,返回结果: ? 后面两列就是我们想要的手机号和邮箱了。...本文讲解了在powerquery中进行数据清洗工作时如何运用Python来实现一些特定的功能。

    3.3K31

    Python数据分析实验二:Python数据预处理

    二、实验任务 使用Pandas和Matplotlib库分别完成以下要求: 把包含销售数据的chipotle.csv文件内容读取到一个名为chipo的数据框中,并显示该文件的前10行记录 获取chipo数据框中每列的数据类型...接着,使用reset_index()方法将 Series 转换为数据框,并将 ‘order_id’ 列设置为索引。...()函数绘制饼图,传入幸存者男性和女性数量的数据df4,并设置了一些参数: explode=(0,0.1):将饼图中的男性部分稍微突出显示。...通过完成各种任务,我掌握了使用Pandas读取CSV文件并将数据加载到DataFrame中,如何查看DataFrame中每列的数据类型以及如何获取数据的基本统计信息。...通过这次实验,我不仅掌握数据预处理和分析的常用库Pandas的基本用法,能应用Pandas库实现对数据的有效查询、统计分析,以及进行必要的数据预处理;能使用Matplotlib库进行数据可视化,从而为进一步的机器学习应用做好必要的准备

    11600
    领券