要将下面的代码从Keras转换成PyTorch,您可以按照以下步骤进行:
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
nn.Module
:class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.fc1 = nn.Linear(10, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, 1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.sigmoid(self.fc3(x))
return x
model = NeuralNetwork()
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
X
和标签y
已经准备好):X = torch.from_numpy(X).float()
y = torch.from_numpy(y).float()
num_epochs = 100
for epoch in range(num_epochs):
# 前向传播
outputs = model(X)
loss = criterion(outputs, y)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 打印损失
if (epoch+1) % 10 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
predicted = model(X).round()
这样,您就成功将Keras代码转换成了PyTorch代码。请注意,这只是一个示例,您可能需要根据您的具体情况进行适当的修改和调整。
没有搜到相关的文章