模型正则化欠拟合与过拟合线性回归模型2次多项式回归4次多项式回归评估3种回归模型在测试数据集上的性能表现L1范数正则化Lasso模型在4次多项式特征上的拟合表现L2范数正则化
模型正则化
任何机器学习模型在训练集上的性能表现...欠拟合与过拟合
所谓拟合,是指机器学习模型在训练的过程中,通过更新参数,使得模型不断契合可观测数据(训练集)的过程。本文将使用一个“比萨饼价格预测”的例子来说明。...(degree=2)映射出2次多项式特征,存储在变量x_ train_poly2中。...并且根据所输出的图示,2次多项式回归曲线(绿色)比起线性回归直线(蓝色),对训练数据的拟合程度也增加了许多。由此,尝试更加大胆地进一步升高特征维度,增加到4次多项式。...,制成表格;最终的结果却令人咋舌:当模型复杂度很低(Degree=1)时,模型不仅没有对训练集上的数据有良好的拟合状态,而且在测试集上也表现平平,这种情况叫做欠拟合(Underfitting);但是,当我们一味追求很高的模型复杂度