展开

关键词

mnist手写数字识别代码(knn手写数字识别)

MNIST 手写数字识别模型建立与优化 本篇的主要内容有: TensorFlow 处理MNIST数据集的基本操作 建立一个基础的识别模型 介绍 S o f t m a x Softmax Softmax 回归以及交叉熵等 MNIST是一个很有名的手写数字识别数据集(基本可以算是“Hello World”级别的了吧),我们要了解的情况是,对于每张图片,存储的方式是一个 28 * 28 的矩阵,但是我们在导入数据进行使用的时候会自动展平成 plt.matshow(curr_img, cmap=plt.get_cmap('gray')) plt.show() 通过上面的代码可以看出数据集中的一些特点,下面建立一个简单的模型来识别这些数字 方便矩阵乘法处理 x = tf.placeholder(tf.float32, [None, 784]) # 输出的结果是对于每一张图输出的是 1*10 的向量,例如 [1, 0, 0, 0...] # 只有一个数字是 tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # 判断是否预测结果与正确结果是否一致 # 注意这里使用的函数的 argmax()也就是比较的是索引 索引才体现了预测的是哪个数字

5830

KNN 手写数字识别

sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] 手写数字识别 fileNameStr = trainingFileList[i] # 去掉 .txt fileStr = fileNameStr.split('.')[0] # 第一个数字为分类 fileNameStr = testFileList[i] # 去掉 .txt fileStr = fileNameStr.split('.')[0] # 第一个数字是类别

10320
  • 广告
    关闭

    老用户专属续费福利

    云服务器CVM、轻量应用服务器1.5折续费券等您来抽!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Softmax 识别手写数字

    TensorFlow 入门(二):Softmax 识别手写数字 MNIST是一个非常简单的机器视觉数据集,如下图所示,它由几万张28像素x28像素的手写数字组成,这些图片只包含灰度值信息。 我们的任务就是对这些手写数字的图片进行分类,转成0~9一共十类。 ? ,请关闭杀毒软件,以防误报。 我们可以用一个数字数组来表示这张图片: ? 我们把这个数组展开成一个向量,长度是 28x28 = 784。如何展开这个数组(数字间的顺序)不重要,只要保持各个图片采用相同的方式展开。 这里手写数字识别为多分类问题,因此我们采用Softmax Regression模型来处理。关于Softmax,可以参看这里。你也可以认为它是二分类问题Sigmoid函数的推广。

    90940

    kaggle-识别手写数字

    l = np.array(l[1:], dtype=float) train = l[1:,1:] label = l[1:,0] a = pd.DataFrame(train) # 二值化,不影响数字显示 = 1 l = load_data('test.csv') test = np.array(l[1:], dtype=float) a = pd.DataFrame(test) # 二值化,不影响数字显示 画一个像素图片数字,第二个图片,上面预测是0 from PIL import Image import numpy as np import matplotlib.pyplot as plt import

    31720

    PaddlePaddle之手写数字识别

    对于新手来说,最简单的安装方式就是: CPU版本安装 pip install paddlepaddle GPU版本安装 pip install paddlepaddle-gpu 用PaddlePaddle实现手写数字识别 这次训练的手写数字识别数据量比较小,但是如果想要添加数据,也非常方便,直接添加到相应目录下。 2.event_handler机制,可以自定义训练结果输出内容。 安装诡异是一个吐槽点,但其实还是很优秀的一个开源软件,尤其是最值得说的分布式训练方式,多机多卡的设计是非常优秀的,本篇没有讲,下次讲讲如何用paddlepaddle做单机单卡,单机多卡,多机单卡和多机多卡的训练方式来训练模型

    40780

    手写数字识别

    11.451450348 Accuracy= 0.9588 Train Finished takes: 76.92 Starting another session for prediction 算法:手写数字识别使用的框架是由多个隐藏层组成的神经网络

    8520

    Digit Recognizer 手写数字识别

    28030

    机器学习-手写数字识别

    据说,在命令行窗口打印出‘hello,world’是入门编程语言的第一个程序,那么手写数字识别就是机器学习的hello,world了,学习的东西不经常复习的容易忘记,因此在这里记录一下。 要进行手写数字识别,首先需要数据,然后在定义一个神经网络来对数据进行训练,然后把训练好的权重和模型保存起来,在另外的程序调用,并拿来测试你想要测试的图片,看看训练的结果是不是比较正确。 关于数据获取,这里选择的keras自带的数据集,可以在keras的官网可以找到你需要的数据集,https://keras.io/datasets/ 数据集包含10个数字的60,000个 然后再添加一个隐藏层,这里就不用定义输入个数,只需要输出的和激活函数,紧接着就是输出层了,因为我们的数字是0-9,有10个数字,这里的大小也是10,而这里的激活函数就要改成softmax,模型就这样构建完成了

    55520

    KNN实现手写数字识别

    KNN实现手写数字识别 博客上显示这个没有Jupyter的好看,想看Jupyter Notebook的请戳KNN实现手写数字识别.ipynb 1 - 导入模块 import numpy as np y_train, x_test, y_test = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels 展示手写数字

    82690

    基于tensorflow的手写数字识别

    一、前言 本文主要介绍了tensorflow手写数字识别相关的理论,包括卷积,池化,全连接,梯度下降法。 二、手写数字识别相关理论 2.1 手写数字识别运算方法 图1 识别过程就像图片中那样,经过多次卷积和池化(又叫子采样),最后全连接就运算完成了。 2.2 卷积 卷积神经网络简介(Convolutional Neural Networks,简称CNN) 卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。

    69770

    TensorFlow-手写数字识别(一)

    MNIST数据集 MNIST数据集 :包含7万张黑底白字手写数字图片,其中55000张为训练集,5000张为验证集,10000张为测试集。 ? 例如: 一张数字手写体图片变成长度为 784 的一维数组[0.0.0.0.0.231 0.235 0.459……0.219 0.0.0.0.]输入神经网络。 该图片对应的标签为[0.0.0.0.0.0.1.0.0.0],标签中索引号为 6 的元素为 1,表示是数字 6 出现的概率为 100%,则该图片对应的识别结果是 6。 TensorFlow模型搭建基础 实现“MNIST数据集手写数字识别 ”的常用函数 ① tf.get_collection("") 函数表示从collection集合中取出全部变量生成一个列表 。 实现手写体MNIST数据集的识别任务前向传播过程如下: import tensorflow as tf INPUT_NODE = 784 OUTPUT_NODE = 10 LAYER1_NODE =

    52010

    用TensorFlow进行手写数字识别

    对于人类来说,识别手写数字是一件非常容易的事情。我们甚至不用思考,就可以看出下面的数字分别是5,0,4,1。 但是想让机器识别这些数字,则要困难得多。 为了找到识别手写数字的方法,机器学习界的大师Yann LeCun利用NIST(National Institute of Standards and Technology 美国国家标准技术研究所)的手写数字库构建了一个便于机器学习研究的子集 MNIST由70000张手写数字(0~9)图片(灰度图)组成,由很多不同的人写成,其中60000张是训练集,另外10000张是测试集,每张图片的大小是28 x 28像素,数字的大小是20 x 20,位于图片的中心 更详细的信息可以参考Yann LeCun的网站:http://yann.lecun.com/exdb/mnist/ 已经有很多研究人员利用该数据集进行了手写数字识别的研究,也提出了很多方法,比如KNN、 抛开这些研究成果,我们从头开始,想想怎样用机器学习的方法来识别这些手写数字。因为数字只包含0~9,对于任意一张图片,我们需要确定它是0~9中的哪个数字,所以这是一个分类问题。

    5.3K01

    Tensorflow MNIST CNN 手写数字识别

    tf.nn.sparse_softmax_cross_entropy_with_logits(logits=model_output, labels=y_target)) # 构造预测函数,通过输出预测是属于哪个数字分类

    24540

    TensorFlow-手写数字识别(二)

    本篇文章在上篇TensorFlow-手写数字识别(一)的基础上进行改进,主要实现以下3点: 断点续训 测试真实图片 制作TFRecords格式数据集 断点续训 上次的代码每次进行模型训练时,都会重新开始进行训练 testPicArr) print "The prediction number is:", preValue 任务分两个函数完成 testPicArr = pre_pic(testPic)对手写数字图片做预处理 print("No checkpoint file found") return -1 注解: 1)main 函数中调用的application()函数:输入要识别的几张图片 (注意要给出待识别图片的路径和名称)。 注:以上测试图片用的是下面教程中自带的图片,测试结果100%准确,我自己用Windows画图板手写了0~9的数字,准确度只有50%左右,可能是我手写字体和MNIST库中的风格差异较大,或是目前的网络还不够好

    24310

    pytorch:实践MNIST手写数字识别

    在datasets.MNIST的中可以设置download=True,这样设置,系统会自动在root里面检测MNIST数据文件,如果存在则不下载,如果不存在则自...

    10910

    TensorFlow 2.0 识别MNIST手写数字

    82110

    TensorFlow-手写数字识别(三)

    本篇文章在上篇TensorFlow-手写数字识别(二)的基础上,将全连接网络改为LeNet-5卷积神经网络,实现手写数字识别。 参数个数:Σ(前层x后层+后层) 如之前用于手写识别的3层全连接网络,输入层784个节点,隐藏层500个节点,输出层10个节点。 LeNet-5是最早出现的卷积神经网络,它有效解决了手写数字识别问题。 The prediction number is: [9] TRUE m = 10,n = 10 test accuracy = 100% 该测试结果用的是下面教程链接中的图片(下图第一排),换成自己手写数字

    30220

    KNN算法实现手写数字识别

    下面的是KNN案例的应用:手写数字识别。 我这里的案例是文本格式。没有图片转换的步骤。 素材模型:(源码+素材最后会贴上githup的链接) KNN 手写数字识别 实现思路: 将测试数据转换成只有一列的0-1矩阵形式 将所有(L个)训练数据也都用上方法转换成只有一列的0-1矩阵形式 #1934个训练集 ## print(len(test)) #945个测试集 trainingDigits =r'D:\work\日常任务6机器学习\day2手写数字识别 \trainingDigits' testDigits = r'D:\work\日常任务6机器学习\day2手写数字识别\testDigits' : def shibie(): ## 定义一个识别手写数字的函数 label_list = []

    13530

    tensorflow2.0手写数字识别(tensorflow手写识别)

    本节笔记作为 Tensorflow 的 Hello World,用 MNIST 手写数字识别来探索 Tensorflow。 环境: Windows 10 Anaconda 4.3.0 Spyder 本节笔记主要采用 Softmax Regression 算法,构建一个没有隐层的神经网络来实现 MNIST 手写数字识别。 Softmax Regression 算法 数字都是0~9之间的,一共有10个类别,当对图片进行预测时,Softmax Regression 会对每一种类别估算一个概率,并将概率最大的那个数字作为结果输出 如某个像素的灰度值大代表很有可能是数字n,这个像素权重就很大,反之,这个权重很有可能为负值。 特征公式: b i b_i bi​ 为偏置值,就是这个数据本身的一些倾向。 ), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print('MNIST手写图片准确率

    8140

    CNN神经网络--手写数字识别

    CNN神经网络–手写数字识别 ? 引入包 python import numpy as np import tensorflow as tf 下载并载入 MNIST 手写数字库(55000 * 28 * 28)55000 张训练图像 python tf.placeholder(tf.int32,[None,10]) input_x_images = tf.reshape(input_x,[-1,28,28,1]) 从Test数据集里选取3000个手写数字的图片和对应标签 numbers 完整代码: python # -*- coding: UTF-8 -*- import numpy as np import tensorflow as tf # 下载并载入 MNIST 手写数字库 的地方的维度应该是多少 input_x_images = tf.reshape(input_x, [-1, 28, 28, 1]) # 改变形状之后的输入 # 从 Test(测试)数据集里选取 3000 个手写数字的图片和对应标签

    51731

    相关产品

    • 通用文字识别

      通用文字识别

      通用文字识别(General OCR)提供通用印刷体识别、通用印刷体识别(高精度版)、通用印刷体识别(高速版)、通用手写体识别、英文识别等多种服务,支持将图片上的文字内容,智能识别为可编辑的文本,可应用于随手拍扫描、纸质文档电子化、电商广告审核、智能翻译等场景,大幅提升信息处理效率。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券