摘要:本文介绍了某零售企业用户基于 Dlink + FlinkSQL 构建批流一体数据平台的实践,主要为部署的分享。...地址 https://github.com/DataLinkDC/dlink 欢迎大家关注 Dlink 的发展~ 一、前言 由于公司需求,最近调研了很多的开源项目,最终发现 Dlink 在建立批流一体的数据平台上更满足需求...数据开发的便捷性对于数据平台来说非常重要,决定了项目的建设与运维成本,而 Dlink 提供了 FlinkSQL 与其他 SQL 的开发与调试能力,使数据开发工作达到Hue 的效果,自动提交及创建远程集群的能力降低了使用门槛...,与作者沟通后,得知 Dlink 的 RoadMap 正为所需求的数据平台,于是部署研究后,效果不错,准备节后上线生产,期间踩了一些坑,整理了一篇文章来分享,时间关系,后续还会分享其他的内容。...3.local 不熟悉的话慎用,并不要执行流任务。 三、集群中心 集群中心配置包括: 集群实例 集群配置其中集群实例适用场景为standalone和yarn session以及k8s session。
图片融合查询语法etl-engine引擎中的融合查询提供将多源数据在内存中重组关联查询并输出查询结果的能力。融合查询语法遵循ANSI SQL标准,与常规MySQL查询语法很相似。...支持对多种类别数据库之间读取的数据进行融合查询。支持消息流数据传输过程中动态产生的数据与多种类型数据库之间的流计算查询。融合查询语法遵循ANSI SQL标准。
来源:Kafka-Flink Meetup深圳站 作者:陈肃 正文
4 月 2 日,我司 CEO 郭斯杰受邀在 Flink Forward San Francisco 2019 大会上发表演讲,介绍了 Flink 和 Pulsar 在批流应用程序的融合情况。...由于 Pulsar 提供属性(租户)级、命名空间级和主题级的资源隔离,Pulsar 的多租户特性不仅能使数据平台管理人员轻松扩展新的团队,还能跨集群共享数据,简化团队协作。 ?...未来融合方式: Pulsar 能以不同的方式与 Apache Flink 融合,一些可行的融合包括,使用流式连接器(Streaming Connectors)支持流式工作负载,或使用批式源连接器(Batch...,将“批”作为“流”的特殊情况进行“流式优先”处理。...通过 Pulsar 的 Segmented Streams 方法和 Flink 在一个框架下统一批处理和流处理工作负载的几个步骤,可以应用多种方法融合两种技术,提供大规模的弹性数据处理。
; 简述大数据架构发展 Lambda 架构 Lambda 架构是目前影响最深刻的大数据处理架构,它的核心思想是将不可变的数据以追加的方式并行写到批和流处理系统内,随后将相同的计算逻辑分别在流和批系统中实现...,并且在查询阶段合并流和批的计算视图并展示给用户。...流批融合的 Lambda 架构 针对 Lambda 架构的问题3,计算逻辑需要分别在流批框架中实现和运行的问题,不少计算引擎已经开始往流批统一的方向去发展,例如 Spark 和 Flink,从而简化lambda...图4 Kafka + Flink + ElasticSearch的混合分析系统 Lambda plus:Tablestore + Blink 流批一体处理框架 Lambda plus 是基于 Tablestore...tp 系统低延迟读写更新,同时也提供了索引功能 ad-hoc 查询分析,数据利用率高,容量型表格存储实例也可以保证数据存储成本可控; 计算上,Lambda plus 利用 Blink 流批一体计算引擎
这不仅是技术革新,更是认知跃迁——数据世界正以'批流一体'为核心进行板块级重构。...Domino 架构通过数据库内核级的融合,实现了批流一体的真正突破,重新定义了批流一体的数据处理范式。...其核心目标是通过统一 everything 的设计与存储计算融合,彻底消除传统流批架构的割裂,降低技术复杂性,同时以 SQL 为核心实现“零代码批流一体开发”。...这种存算融合的方式降低了数据在存储层与计算层之间转换的开销,从而提高了处理效率。同时内核级的事务支持确保批流处理结果始终保持一致,不再因数据分离而产生不一致风险。...这样的架构不仅大幅降低了技术架构的复杂度,更使得懂 SQL 的开发者可以轻松驾驭复杂的批流处理任务,从而推动企业数据平台向更高效、更易用的方向发展。
转自:未知的瞬间 陈肃致力于企业级数据集成平台的研发。曾就职于中国移动研究院(用户行为实验室负责人)、亿瑞互动科技有限公司(技术VP)。对消息中间件、推荐系统等领域都有丰富的实践经验。...批量和流式是数据集成的两种任务形态。在实际应用中,批量和流式往往需要结合使用:前者处理历史数据,后者处理增量数据。数据同步的一致性语义保证是构建批流一体数据集成平台的基本要求。...无论是批流切换,还是数据在流转环节中出现的运行异常,都不能影响数据的最终一致性。...Kafka Connect 作为一个被广泛应用的数据集成框架,只提供了数据同步端到端至少一次(at least once)的语义保证。
实现批处理的技术许许多多,从各种关系型数据库的sql处理,到大数据领域的MapReduce,Hive,Spark等等。这些都是处理有限数据流的经典方式。...这两个 API 都是批处理和流处理统一的 API,这意味着在无边界的实时数据流和有边界的历史记录数据流上,关系型 API 会以相同的语义执行查询,并产生相同的结果。...Table API / SQL 正在以流批统一的方式成为分析型用例的主要 API。 DataStream API 是数据驱动应用程序和数据管道的主要API。...相反,MapReduce、Tez 和 Spark 是基于批的,这意味着数据在通过网络传输之前必须先被写入磁盘。该测试说明,在使用Flink 时,系统空闲时间和磁盘访问操作更少。...因此,Flink 可以用同一个数据处理框架来处理无限数据流和有限数据流,并且不会牺牲性能。
图片 - 随着大数据领域不断发展,企业对于业务场景的诉求也从离线的满足转到高实时性的要求,“t+0”形式呈现业务数据已是刚需。
流计算与批计算对比 数据时效性 流式计算实时、低延迟,流式计算适合以“t+0”的形式呈现业务数据; 批计算非实时、高延迟,批计算适合以“t+1”的形式呈现业务数据; 数据特征 流式计算数据一般是动态数据...,数据是随时产生的; 批计算数据一般是静态数据,数据事先已经存储在各种介质中。...etl-engine 实现流式计算 etl-engine 支持通过自身提供的 ”kafka消费节点“进行消息消费,并在消费数据流(消息流)的同时调用自身提供的“融合查询API”,实现将多种数据源的维表数据读取到内存中...,然后将消息流与多个维表数据进行各种关联查询,最后输出融合查询结果集到目标源,常用在将多个维表数据与实时消息流关联后转换成一个大宽表的场景。...支持消息流数据传输过程中动态产生的数据与多种类型数据库之间的流计算查询。 融合查询语法遵循ANSI SQL标准。
Flink如何做到流批一体 流批一体的理念 2020年,阿里巴巴实时计算团队提出“流批一体”的理念,期望依托Flink框架解决企业数据分析的3个核心问题,理念中包含三个着力点,分别是一套班子、一套系统、...一套班子:统一开发人员角色,现阶段企业数据分析有两个团队,一个团队负责实时开发,一个团队负责离线开发,在流批一体的理念中,期望促进两个团队的融合。...流批一体的理念即使用同一套 API、同一套开发范式来实现大数据的流计算和批计算,进而保证处理过程与结果的一致性。...何时需要流批一体 举例: 在抖音中,实时统计一个短视频的播放量、点赞数,也包括抖音直播间的实时观看人数等(流) 在抖音中,按天统计创造者的一些数据信息,比如昨天的播放量有多少、评论量多少、广告收入多少(...Apache Flink主要从以下模块来实流批一体化: 1.SQL层:支持bound和unbound数据集的处理; 2.DataStream API层统一,批和流都可以使用DataStream ApI来开发
Flink使用HiveCatalog可以通过批或者流的方式来处理Hive中的表。...这就意味着Flink既可以作为Hive的一个批处理引擎,也可以通过流处理的方式来读写Hive中的表,从而为实时数仓的应用和流批一体的落地实践奠定了坚实的基础。...Temporal Join最新分区 对于一张随着时间变化的Hive分区表,Flink可以读取该表的数据作为一个无界流。...Hive维表JOIN示例 假设维表的数据是通过批处理的方式(比如每天)装载至Hive中,而Kafka中的事实流数据需要与该维表进行JOIN,从而构建一个宽表数据,这个时候就可以使用Hive的维表JOIN...在实际应用中,通常有将实时数据流与 Hive 维表 join 来构造宽表的需求,Flink提供了Hive维表JOIN,可以简化用户使用的复杂度。
l最后, DataStream 还支持与合并对称的拆分操作,即把一个流按一定规则拆分为多个流(Split 操作),每个流是之前流的一个子集,这样我们就可以对不同的流作不同的处理。...,并生成同类型的数据流,即可以将多个DataStream[T]合并为一个新的DataStream[T]。...connect: connect提供了和union类似的功能,用来连接两个数据流,它与union的区别在于: connect只能连接两个数据流,union可以连接多个数据流。...connect所连接的两个数据流的数据类型可以不一致,union所连接的两个数据流的数据类型必须一致。...两个DataStream经过connect之后被转化为ConnectedStreams,ConnectedStreams会对两个流的数据应用不同的处理方法,且双流之间可以共享状态。
nc是netcat的简称,原本是用来设置路由器,我们可以利用它向某个端口发送数据 如果没有该命令可以下安装 yum install -y nc 2.使用Flink编写流处理应用程序实时统计单词数量 代码实现...API 一般用于学习测试,模拟生成一些数据 Flink还提供了数据源接口,我们实现该接口就可以实现自定义数据源,不同的接口有不同的功能,分类如下: SourceFunction:非并行数据源(并行度只能...:多功能非并行数据源(并行度只能=1) * ParallelSourceFunction:并行数据源(并行度能够>=1) * RichParallelSourceFunction:多功能并行数据源(...,要和MySQL中存储的一些规则进行匹配,那么这时候就可以使用Flink自定义数据源从MySQL中读取数据 那么现在先完成一个简单的需求: 从MySQL中实时加载数据 要求MySQL中的数据有变化,也能被实时加载出来...,要和MySQL中存储的一些规则进行匹配,那么这时候就可以使用Flink自定义数据源从MySQL中读取数据 * 那么现在先完成一个简单的需求: * 从MySQL中实时加载数据 * 要求MySQL中的数据有变化
Author lanson * Desc * 1.ds.print 直接输出到控制台 * 2.ds.printToErr() 直接输出到控制台,用红色 * 3.ds.collect 将分布式数据收集为本地集合...//Parallelism>1为文件夹 //5.execute env.execute(); } } 自定义Sink MySQL 需求: 将Flink集合中的数据通过自定义...java.sql.DriverManager; import java.sql.PreparedStatement; /** * Author lanson * Desc * 使用自定义sink将数据保存到
01 整体思考 提到流批一体,不得不提传统的大数据平台 —— Lambda 架构。...通过一套数据链路来同时满足流和批的数据处理需求是最理想的情况,即流批一体。此外我们认为流批一体还存在一些中间阶段,比如只实现计算的统一或者只实现存储的统一也是有重大意义的。...上图是京东实时计算平台的全景图,也是我们实现流批一体能力的载体。中间的 Flink 基于开源社区版本深度定制。...3.1 案例一 实时通用数据层 RDDM 流批一体化的建设。...我们会加大 FlinkSQL 任务的推广,探索更多流批一体的业务场景,同时对产品形态进行打磨,加速用户向 SQL 的转型。同时,将平台元数据与离线元数据做更深度的融合,提供更好的元数据服务。
❝每家数字化企业在目前遇到流批一体概念的时候,都会对这个概念抱有一些疑问,到底什么是流批一体?这个概念的来源?这个概念能为用户、开发人员以及企业带来什么样的好处?跟随着博主的理解和脑洞出发吧。...❞ 前言 到底什么是流批一体? 批的来源?流的来源? 为什么要做流批一体? 从 数据开发的现状出发 探索理想中的流批一体能力支持 最终到数仓落地 go!!! ? ? ? ? ? ? ?...n 年前的引擎能力(hive 等) 对文件、批量数据处理支持很友好 数据多是小时、天级别延迟 结论:批是在批式存储、处理引擎能力支持的角度提出的 ? ?...近几年的引擎能力(flink 等) 逐渐对流式数据处理、容错支持更好 数据可以做到秒、分钟级别延迟 结论:流是在流式存储、处理引擎能力支持的角度提出的 ? ? ? ? ? ? ?...博主理解的流批一体更多的是站在平台能力支持的角度上 所以这里重点说明引擎 + 工具链上的期望 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Apache Flink 1.12 Documentation: JDBC Connector