首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

粒子群优化算法(PSO)和matlab代码实现

粒子群算法是一种智能优化算法。关于智能,个人理解,不过是在枚举法的基础上加上了一定的寻优机制。试想一下枚举法,假设问题的解空间很小,比如一个函数 y = x^2 ,解空间在[-1,1],现在求这个函数的最小值,我们完全可以使用枚举法,比如在这里,在解空间[-1,1]上,取1000等分,也就是步长为0.002,生成1000个x值,然后代入函数中,找到这1000个最小的y就可以了。然而实际情况不是这样的,比如为什么选1000等分,不是1w,10w等分,很显然等分的越大,计算量也就越大,带来的解当然也就越精确,那么实际问题中如何去平衡这两点呢?也就是既要计算量小(速度快),也要准确(精度高),这就是智能算法的来源了,一般的智能算法基本上都是这样的,在很大的搜索空间上,即保证了速度快,也能比较好的找到最优解。

02

普林斯顿研究“最小值”:平方和的破局,二次和三次优化问题的极限

多目标优化是各个领域中普遍存在的问题,每个目标不可能都同时达到最优,并且有现实应用的时效。各个因素必须各有权重。在困局中,平方和方法可用来寻找局部最优解。 编译 | 吴彤 编辑 | 维克多 生命是一连串的优化问题,下班后寻找回家的最快路线;去商店的路上权衡最佳性价比,甚至当睡前“玩手机”的安排,都可以看做优化问题。 优化问题的同义词是找到解决方案,有无数学者想探求在最短时间内,找到最好的解。但最新研究指出,一些二次优化问题,例如变量对可以相互作用的公式,只能“按部就班”找到局部最优解。换句话说“不存在快速计

01

粒子群优化算法(PSO)

粒子群算法是一种智能优化算法。关于智能,个人理解,不过是在枚举法的基础上加上了一定的寻优机制。试想一下枚举法,假设问题的解空间很小,比如一个函数 y = x^2 ,解空间在[-1,1],现在求这个函数的最小值,我们完全可以使用枚举法,比如在这里,在解空间[-1,1]上,取1000等分,也就是步长为0.002,生成1000个x值,然后代入函数中,找到这1000个最小的y就可以了。然而实际情况不是这样的,比如为什么选1000等分,不是1w,10w等分,很显然等分的越大,计算量也就越大,带来的解当然也就越精确,那么实际问题中如何去平衡这两点呢?也就是既要计算量小(速度快),也要准确(精度高),这就是智能算法的来源了,一般的智能算法基本上都是这样的,在很大的搜索空间上,即保证了速度快,也能比较好的找到最优解。

01

干货 | 用模拟退火(SA, Simulated Annealing)算法解决旅行商问题

前 排 最近这个春节又快到了,虽然说什么有钱没钱回家过年。但也有部分小伙伴早已经备好了盘缠和干粮,准备在这个难得的假期来一场说走就走的旅行了。毕竟世界这么大我想去看看呵……等等,醒醒吧各位 但是,作为21世纪的新一代青年,即使咱穷,梦想还是要有的,对吧。那么,问题来了,如何用最少的钱,环绕中国各大城市走一波?咳咳,今天小编就是为解决此问题而来的。顺带提一波,最近天冷了。小编在这里给大家送上最真切的关心…… * 内容提要: *旅行商问题介绍 *模拟退火算法 *旅行商问题的解决 我想用最少的钱环游中国一圈 01

08

各种智能优化算法比较与实现(matlab版)

免疫算法是受生物免疫系统的启发而推出的一种新型的智能搜索算法。它是一种确定性和随机性选择相结合并具有“勘探”与“开采”能力的启发式随机搜索算法。免疫算法将优化问题中待优化的问题对应免疫应答中的抗原,可行解对应抗体(B细胞),可行解质量对应免疫细胞与抗原的亲和度。如此则可以将优化问题的寻优过程与生物免疫系统识别抗原并实现抗体进化的过程对应起来,将生物免疫应答中的进化过程抽象成数学上的进化寻优过程,形成一种智能优化算法。它具有一般免疫系统的特征,采用群体搜索策略,通过迭代计算,最终以较大的概率得到问题的最优解。相对于其他算法,免疫算法利用自身产生多样性和维持机制的特点,保证了种群的多样性,克服了一般寻优过程(特别是多峰值的寻优过程)的不可避免的“早熟”问题,可以求得全局最优解。免疫算法具有自适应性、随机性、并行性、全局收敛性、种群多样性等优点。 1.2 算法操作步骤 (1)首先进行抗原识别,即理解待优化的问题,对问题进行可行性分析,提取先验知识,构造出合适的亲和度函数,并制定各种约束条件。 (2)然后初始化抗体群,通过编码把问题的可行解表示成解空间中的抗体,在解的空间内随机产生一个初始种群。 (3)对种群中的每一个可行解进行亲和度评价。(记忆单元的更新:将与抗原亲和性高的抗体加入到记忆单元,并用新加入的抗体取代与其亲和性最高的原有抗体(抗体和抗体的亲和性计算)) (4)判断是否满足算法终止条件;如果满足条件则终止算法寻优过程,输出计算结果;否则继续寻优运算。 (5)计算抗体浓度和激励度。(促进和抑制抗体的产生:计算每个抗体的期望值,抑制期望值低于阈值的抗体;可以知道与抗原间具有的亲和力越高,该抗体的克隆数目越高,其变异率也越低) (6)进行免疫处理,包括免疫选择、克隆、变异和克隆抑制。 免疫选择:根据种群中抗体的亲和度和浓度计算结果选择优质抗体,使其活化; 克隆:对活化的抗体进行克隆复制,得到若干副本; 变异:对克隆得到的副本进行变异操作,使其发生亲和度突变; 克隆抑制:对变异结果进行再选择,抑制亲和度低的抗体,保留亲和度高的变异结果。 (7)种群刷新,以随机生成的新抗体替代种群中激励度较低的抗体,形成新一代抗体,转步骤(3)。 免疫算法运算流程图

02
领券