首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

TensorFlow 数据集和估算器介绍

TensorFlow 1.3 引入了两个重要功能,您应当尝试一下: 数据集:一种创建输入管道(即,将数据读入您的程序)的全新方式。 估算器:一种创建 TensorFlow 模型的高级方式。...我们现在已经定义模型,接下来看一看如何使用数据集和估算器训练模型和进行预测。 数据集介绍 数据集是一种为 TensorFlow 模型创建输入管道的新方式。...decode_csv:将每一行拆分成各个字段,根据需要提供默认值。然后,返回一个包含字段键和字段值的字典。map 函数将使用字典更新数据集中的每个元素(行)。 以上是数据集的简单介绍!...这是我们将数据集与估算器连接的位置!估算器需要数据来执行训练、评估和预测,它使用 input_fn 提取数据。...: 总结 在这篇博文中,我们探讨了数据集和估算器。

88890
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    JS题目之数组数据拆分重组转成嵌套对象,让脑细胞活跃下

    ---- 解答 尽量注释,我分步骤解答 1:数组变形 格式:先拿到数据格式如下; [ [ 'code', 'Zh' ], [ 'code', 'Cn' ], [ 'taobao', '.cn'...], [ 'taobao', '.com' ] ] 复制代码 实现 这一步是拆开数据拿到我们想要的,比如基于大写字母,基于域名后缀; 因为数据格式是死的,所以正则也相对较为简单 let arr =...return item.replace(/([A-Z])+/g, ",$1").split(',') } }) console.log(arrSplit); 复制代码 ---- 2:输出构建对象数据...格式:先拿到数据格式如下; [ { code: { Zh: 'codeZh' } }, { code: { Cn: 'codeCn' } }, { taobao: { '.cn': 'taobao.cn...return {[item[0]]:{[item[1]]:item.join('')}} }) console.log(arrGroup); 复制代码 ---- 3: 实现符合的JSON 格式 : 先拿到数据格式如下

    1.7K10

    最新|官方发布:TensorFlow 数据集和估算器介绍

    TensorFlow 1.3 引入了两个重要功能,您应当尝试一下: 数据集:一种创建输入管道(即,将数据读入您的程序)的全新方式。 估算器:一种创建 TensorFlow 模型的高级方式。...下面是它们在 TensorFlow 架构内的装配方式。结合使用这些估算器,可以轻松地创建 TensorFlow 模型和向模型提供数据: ?...我们现在已经定义模型,接下来看一看如何使用数据集和估算器训练模型和进行预测。 数据集介绍 数据集是一种为 TensorFlow 模型创建输入管道的新方式。...decode_csv:将每一行拆分成各个字段,根据需要提供默认值。然后,返回一个包含字段键和字段值的字典。map 函数将使用字典更新数据集中的每个元素(行)。 以上是数据集的简单介绍!...总结 在这篇博文中,我们探讨了数据集和估算器。这些是用于定义输入数据流和创建模型的重要 API,因此花一些时间来学习它们非常值得!

    83450

    Hello TensorFlow : MINST数据集识别

    MINST介绍 MNIST 数据集来自美国国家标准与技术研究所(National Institute of Standards and Technology )。...训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员,测试集(test...本文会介绍两种方法: softmax回归 卷积神经网络(CNN) ---- softmax回归 读取数据 首先读取数据,MINST数据集中每个图片都是 ?...Tip: TensorFlow可以自动下载MINST数据集,而且很容易失败,所以建议还是自己从网上下载好MINST数据集再加载。...代码很简单,就一行: y = tf.nn.softmax(tf.matmul(input_x, weight) + bias) 损失函数和优化器 我们采用交叉熵和梯度下降法分别作为损失函数和优化器,

    1.2K20

    数据库表的垂直拆分和水平拆分

    表的垂直拆分和水平拆分 垂直拆分 垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表 20191028234705.png 通常我们按以下原则进行垂直拆分: 把不常用的字段单独放在一张表...; 把text,blob等大字段拆分出来放在附表中; 经常组合查询的列放在一张表中; 垂直拆分更多时候就应该在数据表设计之初就执行的步骤,然后查询的时候用join关键起来即可; 水平拆分 水平拆分是指数据表行的拆分...,表的行数超过 200 万行时,就会变慢,这时可以把一张的表的数据拆成多张表来存放。...,字段的列和类型和原表应该是相同的,但是要记得去掉 auto_increment 自增长 另外 部分业务逻辑也可以通过地区,年份等字段来进行归档拆分; 进行拆分后的表,只能满足部分查询的高效查询需求,这时我们就要在产品策划上...——摘自《表的垂直拆分和水平拆分》

    2K10

    自创数据集,使用TensorFlow预测股票入门

    数据集地址:http://files.statworx.com/sp500.zip 导入和预处理数据 STATWORX 团队从服务器爬取股票数据,并将它们保存为 csv 格式的文件。...该数据集包含 n=41266 分钟的记录,范围从 2017 年的 4 月到 8 月的 500 支股票和 S&P 500 指数,股票和股指的范围分布十分广。...,即损失的股票和股指都通过 LOCF'ed 处理(下一个观测数据复制前面的),所以该数据集没有任何缺损值。...S&P 500 股指时序绘图 预备训练和测试数据 该数据集需要被分割为训练和测试数据,训练数据包含总数据集 80% 的记录。该数据集并不需要扰乱而只需要序列地进行切片。...比较常见的错误就是在拆分测试和训练数据集之前缩放整个数据集。因为我们在执行缩放时会涉及到计算统计数据,例如一个变量的最大和最小值。

    1.2K70

    自创数据集,使用TensorFlow预测股票入门

    数据集地址:http://files.statworx.com/sp500.zip 导入和预处理数据 STATWORX 团队从服务器爬取股票数据,并将它们保存为 csv 格式的文件。...该数据集包含 n=41266 分钟的记录,范围从 2017 年的 4 月到 8 月的 500 支股票和 S&P 500 指数,股票和股指的范围分布十分广。...,即损失的股票和股指都通过 LOCF'ed 处理(下一个观测数据复制前面的),所以该数据集没有任何缺损值。...S&P 500 股指时序绘图 预备训练和测试数据 该数据集需要被分割为训练和测试数据,训练数据包含总数据集 80% 的记录。该数据集并不需要扰乱而只需要序列地进行切片。...比较常见的错误就是在拆分测试和训练数据集之前缩放整个数据集。因为我们在执行缩放时会涉及到计算统计数据,例如一个变量的最大和最小值。

    1.4K70

    TensorFlow TFRecord数据集的生成与显示

    TensorFlow提供了TFRecord的格式来统一存储数据,TFRecord格式是一种将图像数据和标签放在一起的二进制文件,能更好的利用内存,在tensorflow中快速的复制,移动,读取,存储 等等...利用下列代码将图片生成为一个TFRecord数据集: import os import tensorflow as tf from PIL import Image import matplotlib.pyplot...将图片形式的数据生成多个TFRecord 当图片数据量很大时也可以生成多个TFRecord文件,根据TensorFlow官方的建议,一个TFRecord文件最好包含1024个左右的图片,我们可以根据一个文件内的图片个数控制最后的文件个数...将单个TFRecord类型数据集显示为图片 上面提到了,TFRecord类型是一个包含了图片数据和标签的合集,那么当我们生成了一个TFRecord文件后如何查看图片数据和标签是否匹配?...将多个TFRecord类型数据集显示为图片 与读取多个文件相比,只需要加入两行代码而已: data_path = 'F:\\bubbledata_4\\trainfile\\testdata.tfrecords

    6.8K145

    30个最大的机器学习TensorFlow数据集

    它是完整的初学者和经验丰富的数据科学家的端到端平台。TensorFlow库包括工具,预先训练的模型,机器学习指南以及一系列开放数据集。...2.下采样Imagenet:此数据集用于密度估计和生成建模任务。它包括超过130万个物体,场景,车辆,人等的图像。图像有两种分辨率:32 x 32和64 x 64。...Lsun – Lsun是创建的大型图像数据集,用于帮助训练模型以了解场景。数据集包含超过900万张图像,这些图像分为场景类别,例如卧室,教室和餐厅。...该数据集包含由年龄,种族和性别不同的91位演员配音的7,442个音频剪辑。 https://www.tensorflow.org/datasets/catalog/crema_d 18....IRC Disentanglement –这个TensorFlow数据集包括来自Ubuntu IRC频道的刚刚超过77,000条评论。每个样本的元数据包括消息ID和时间戳。

    1.4K31

    如何为Tensorflow构建自定义数据集

    几个周末之后,已经建立了足够的勇气来承担一个小的编码挑战 - 为PCAP网络捕获文件实施新的Tensorflow数据集。...Tensorflow IO和源代码构建 https://github.com/tensorflow/io#developing 2.查看源树中的相邻数据集,并选择一个最接近pcap的数据集。...张量的例子 它有助于理解 TF数据集的好处以及开箱即用的所有便利功能,如批处理,映射,重排,重复。这些功能使得使用有限数据量和计算能力构建和训练TF模型变得更加容易和高效。...数据集和其他TF操作可以用C ++或Python构建。我选择了C ++路由,这样我就可以学习一些TF C ++框架。然后我用Python包装它们。...将来,我计划编写一些纯Python数据集,这应该会更容易一些。 看一下TF IO数据集的源代码文件结构。 ?

    1.9K30
    领券