首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas中的10种索引

作者:Peter 编辑:Peter 大家好,我是Peter~ 今天给大家一片关于Pandas的基本文章:9种你必须掌握的Pandas索引。...索引在我们的日常生活中其实是很常见的,就像: 一本书有自己的目录和具体的章节,当我们想找某个知识点,翻到对应的章节即可; 也像图书馆中的书籍被分类成文史类、技术类、小说类等,再加上书籍的编号,很快就能够找到我们想要的书籍...在Pandas中创建合适的索引则能够方便我们的数据处理工作。 [e6c9d24ely1h0dalinfwhj20lu08e3yq.jpg] <!...pd.Index Index是Pandas中的常见索引函数,通过它能够构建各种类型的索引,其语法为: [e6c9d24ely1h0gmuv2wmmj20x60detah.jpg] pandas.Index...0 pd.Int64Index 指定数据类型是int64整型 pandas.Int64Index( data=None, # 生成索引的数据 dtype=None, # 索引类型,默认是int64

3.6K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas中的缺失值处理

    在真实的数据中,往往会存在缺失的数据。...pandas在设计之初,就考虑了这种缺失值的情况,默认情况下,大部分的计算函数都会自动忽略数据集中的缺失值,同时对于缺失值也提供了一些简单的填充和删除函数,常见的几种缺失值操作技巧如下 1....默认的缺失值 当需要人为指定一个缺失值时,默认用None和np.nan来表示,用法如下 >>> import numpy as np >>> import pandas as pd # None被自动识别为...缺失值的删除 通过dropna方法来快速删除NaN值,用法如下 >>> a.dropna() 0 1.0 1 2.0 dtype: float64 # dropna操作数据框时,可以设置axis参数的值...中的大部分运算函数在处理时,都会自动忽略缺失值,这种设计大大提高了我们的编码效率。

    2.6K10

    数据分析工具Pandas1.什么是Pandas?2.Pandas的数据结构SeriesDataFrame3.Pandas的索引操作索引对象IndexSeries索引DataFrame索引高级索引:标签

    文章来源:Python数据分析 参考学习资料: http://pandas.pydata.org 1.什么是Pandas Pandas的名称来自于面板数据(panel data)和Python数据分析...Pandas是一个强大的分析结构化数据的工具集,基于NumPy构建,提供了 高级数据结构 和 数据操作工具,它是使Python成为强大而高效的数据分析环境的重要因素之一。...,它含有一组有序的列,每列可以是不同类型的值。...类似多维数组/表格数据 (如,excel, R中的data.frame) 每列数据可以是不同的类型 索引包括列索引和行索引 1....,可将其看作ndarray的索引操作 标签的切片索引是包含末尾位置的 ---- 4.Pandas的对齐运算 是数据清洗的重要过程,可以按索引对齐进行运算,如果没对齐的位置则补NaN,最后也可以填充

    3.9K20

    Pandas中替换值的简单方法

    使用内置的 Pandas 方法进行高级数据处理和字符串操作 Pandas 库被广泛用作数据处理和分析工具,用于从数据中清理和提取特征。 在处理数据时,编辑或删除某些数据作为预处理步骤的一部分。...为此,Pandas 提供了多种方法,您可以使用这些方法来处理 DataFrame 中所有数据类型的列。 在这篇文章中,让我们具体看看在 DataFrame 中的列中替换值和子字符串。...当您想替换列中的每个值或只想编辑值的一部分时,这会派上用场。 如果您想继续,请在此处下载数据集并加载下面的代码。...import pandas as pd df = pd.read_csv('WordsByCharacter.csv') 使用“替换”来编辑 Pandas DataFrame 系列(列)中的字符串...Pandas 中的 replace 方法允许您在 DataFrame 中的指定系列中搜索值,以查找随后可以更改的值或子字符串。

    5.5K30

    ElasticSearch - 海量数据索引拆分的一些思考

    把全量商品索引拆分,拆分后的整体全貌如下 拆分后需要进行【多索引联查】 整体迁移流程 整体迁移在设计中主要,分为流量收集,全量写入,增量写入,数据验证,写入方式的异步转同步等阶段。...通过完整的迁移流程设计,来保证最终迁移的数据正确性。 全量迁移流程 该过程主要为历史数据的迁移,并填充历史全量索引的部分数据,重组后的商品数据,分散写入到拆分后的新索引中。...数据写入阶段,组装完的数据就需要按店铺 ID,选择索引,并写到新集群了。将读写任务进行拆分,可以提升整体的资源利用率,并方便进行拉取或写入的限流。过程中只需要做好失败任务的从事,并监控系统资源即可。...中把成功锁的值加一。...后续执行过程中,如果发现成功锁的值等于参加的节点数,直接将数据写入到 ES 。

    63620

    Pandas中的数据分类

    公众号:尤而小屋 作者:Peter 编辑:Pete 大家好,我是Peter~ 本文中介绍的是Categorical类型,主要实现的数据分类问题,用于承载基于整数的类别展示或编码的数据,帮助使用者获得更好的性能和内存使用...--MORE--> 背景:统计重复值 在一个Series数据中经常会出现重复值,我们需要提取这些不同的值并且分别计算它们的频数: import numpy as np import pandas as...Categorical对象 通过pandas.Categorical来生成 通过构造函数from_codes,前提是你必须先获得分类编码数据 # 方式1 df2["subject"] = df2[...Categories对象 有4种取值情况 看到整个数据的最大值和最小值分别在头尾部 # 在上面的4分位数中使用四分位数名称:Q1\Q2\Q3\Q4 bins\_2 = pd.qcut(data1,4...,也就是one-hot编码(独热码);产生的DataFrame中不同的类别都是它的一列,看下面的例子: data4 = pd.Series(["col1","col2","col3","col4"] \

    8.6K20

    Pandas中的数据转换

    import pandas as pd import numpy as np 一、⭐️apply函数应用 apply是一个自由度很高的函数 对于Series,它可以迭代每一列的值操作: df = pd.read_csv...中的axis参数=0时,永远表示的是处理方向而不是聚合方向,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 二、⭐️矢量化字符串 为什么要用str属性 文本数据也就是我们常说的字符串...,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。...Series中的每个字符串 slice_replace() 用传递的值替换每个字符串中的切片 count() 计数模式的发生 startswith() 相当于每个元素的str.startswith(pat...(c)将(b)中的ID列结果拆分为原列表相应的5列,并使用equals检验是否一致。

    13510

    视频中的 I 帧,P 帧,B 帧

    但是在实际应用中,并不是每一帧都是完整的画面,因为如果每一帧画面都是完整的图片,那么一个视频的体积就会很大。...这样对于网络传输或者视频数据存储来说成本太高,所以通常会对视频流中的一部分画面进行压缩(编码)处理。...P 帧是差别帧,P 帧没有完整画面数据,只有与前一帧的画面差别的数据。 若 P 帧丢失了,则视频画面会出现花屏、马赛克等现象。...值得注意的是,由于 B 帧图像采用了未来帧作为参考,因此 MPEG-2 编码码流中图像帧的传输顺序和显示顺序是不同的。...DTS 和 PTS DTS(Decoding Time Stamp):即解码时间戳,这个时间戳的意义在于告诉播放器该在什么时候解码这一帧的数据。

    3.6K20

    如何在 Python 数据中灵活运用 Pandas 索引?

    参考链接: 用Pandas建立索引并选择数据 作者 | 周志鹏  责编 | 刘静  据不靠谱的数据来源统计,学习了Pandas的同学,有超过60%仍然投向了Excel的怀抱,之所以做此下策,多半是因为刚开始用...在loc方法中,我们可以把这一列判断得到的值传入行参数位置,Pandas会默认返回结果为True的行(这里是索引从0到12的行),而丢掉结果为False的行,直接上例子:  场景二:我们想要把所有渠道的流量来源和客单价单拎出来看一看...此处插播一条isin函数的广告,这个函数能够帮助我们快速判断源数据中某一列(Series)的值是否等于列表中的值。...插入场景之前,我们先花30秒的时间捋一捋Pandas中列(Series)向求值的用法,具体操作如下:  只需要加个尾巴,均值、标准差等统计数值就出来了,了解完这个,下面正式进入场景四。 ...作者:周志鹏,2年数据分析,深切感受到数据分析的有趣和学习过程中缺少案例的无奈,遂新开公众号「数据不吹牛」,定期更新数据分析相关技巧和有趣案例(含实战数据集),欢迎大家关注交流。

    1.7K00

    用过Excel,就会获取pandas数据框架中的值、行和列

    在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...获取1行 图7 获取多行 我们必须使用索引/切片来获取多行。在pandas中,这类似于如何索引/切片Python列表。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?

    19.2K60

    pandas | 如何在DataFrame中通过索引高效获取数据?

    今天是pandas数据处理专题第三篇文章,我们来聊聊DataFrame中的索引。 上篇文章当中我们简单介绍了一下DataFrame这个数据结构的一些常见的用法,从整体上大概了解了一下这个数据结构。...数据准备 上一篇文章当中我们了解了DataFrame可以看成是一系列Series组合的dict,所以我们想要查询表中的某一列,也就是查询某一个Series,我们只需要像是dict一样传入key值就可以查找了...行索引其实对应于Series当中的Index,也就是对应Series中的索引。所以我们一般把行索引称为Index,而把列索引称为columns。...不仅如此,loc方法也是支持切片的,也就是说虽然我们传进的是一个字符串,但是它在原数据当中是对应了一个位置的。我们使用切片,pandas会自动替我们完成索引对应位置的映射。 ?...总结 今天主要介绍了loc、iloc和逻辑索引在pandas当中的用法,这也是pandas数据查询最常用的方法,也是我们使用过程当中必然会用到的内容。建议大家都能深刻理解,把它记牢。

    13.6K10

    Silverlight中的帧

    Silverlight是基于时间线的,不象Flash是基于帧的,所以在Silverlight中,很少看到有文档专门介绍SL中的帧。...Silverlight的sdk文档中,有一段话: ... maxFramerate 值可通过 Silverlight 插件对象的 maxframerate 参数进行配置。...maxframerate 参数的默认值为 60。currentFramerate 和 maxFramerate 是报告每秒帧数 (fps) 的值。实际显示的帧速率设置为较低的数字。...可以通过特意设置一个较低的 maxframerate 值(如 2,每秒 2 帧)来阐述 currentFramerate 与 maxFramerate 之间的关系。 ......即sl每秒种默认最多播放60帧,当然我们也能用代码来改变该值(比如设置到100),但最终sl的当前播放速度与硬件有关,并不是你想设多高就能达到多高。

    93460

    pytorch中的数据索引

    pytorch中的数据索引 在PyTorch中,数据索引是指在处理张量(Tensor)时访问或操作特定元素的过程。...索引在数据处理和深度学习中是非常常见且重要的操作,它允许我们以各种方式访问数据集中的元素,执行数据的切片、提取、过滤等操作。...基本索引方法 在PyTorch中,数据索引的基本方法类似于Python中的列表索引。可以通过使用方括号和索引号来访问张量中的特定元素或子集。...损失值(Loss):训练过程中打印了每个Epoch的损失值。损失值表示模型预测结果与实际标签之间的差异程度,越小表示模型的预测结果与实际值越接近。...最后的训练结果说明了 训练损失下降:随着训练的进行,每个 Epoch 的训练损失都在逐渐下降。这表明模型在学习过程中逐渐减小了预测值与实际值之间的差异,即模型在训练数据上的拟合效果逐步改善。

    5310

    Python数据分析实战基础 | 灵活的Pandas索引

    据不靠谱的数据来源统计,学习了Pandas的同学,有超过60%仍然投向了Excel的怀抱,之所以做此下策,多半是因为刚开始用Python处理数据时,选择想要的行和列实在太痛苦,完全没有Excel想要哪里点哪里的快感...在loc方法中,我们可以把这一列判断得到的值传入行参数位置,Pandas会默认返回结果为True的行(这里是索引从0到12的行),而丢掉结果为False的行,直接上例子: ?...此处插播一条isin函数的广告,这个函数能够帮助我们快速判断源数据中某一列(Series)的值是否等于列表中的值。...插入场景之前,我们先花30秒的时间捋一捋Pandas中列(Series)向求值的用法,具体操作如下: ? 只需要加个尾巴,均值、标准差等统计数值就出来了,了解完这个,下面正式进入场景四。...只要稍加练习,我们就能够随心所欲的用pandas处理和分析数据,迈过了这一步之后,你会发现和Excel相比,Python是如此的美艳动人。

    1.1K20

    Pandas的10大索引

    认识Pandas的10大索引 索引在我们的日常中其实是很常见的,就像: 一本书有自己的目录和具体的章节,当我们想找某个知识点,翻到对应的章节即可; 也像图书馆中的书籍被分类成文史类、技术类、小说类等,再加上书籍的编号...在Pandas中创建合适的索引则能够方便我们的数据处理工作。...官网学习地址:https://pandas.pydata.org/docs/reference/api/pandas.Index.html 下面通过实际案例来介绍Pandas中常见的10种索引,以及如何创建它们...pd.Index Index是Pandas中的常见索引函数,通过它能够构建各种类型的索引,其语法为: pandas.Index( data=None, # 一维数组或者类似数组结构的数据 dtype...0 pd.Int64Index 指定数据类型是int64整型 pandas.Int64Index( data=None, # 生成索引的数据 dtype=None, # 索引类型,默认是int64

    32430
    领券