首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于R统计软件的三次样条和平滑样条模型数据拟合及预测

p=9670 样条线是拟合非线性模型并从数据中学习非线性相互作用的一种方法。  三次样条  三次样条 具有连续的一阶和二阶导数。...我们通过应用基础函数来变换变量  并使用这些变换后的变量拟合模型, 向模型添加非线性, 使样条曲线能够拟合更平滑 。...    R中使用函数拟合三次样条。...平滑样条线  我们在平滑样条曲线中的目的是通过添加粗糙度最小化误差函数 。 现在我们可以注意到,红线(即“平滑样条线”)更加摇摆不定,并且更灵活地拟合数据。这可能是由于高度的自由度所致。...结论 因此, 我们需要对数据或变量进行一些转换,以使模型在学习输入X i Xi和输出  Y之间的非线性相互作用时更灵活,更强大。

2.2K00

R语言里的非线性模型:多项式回归、局部样条、平滑样条、广义加性模型分析

阶跃函数  将变量的范围划分为  K个  不同的区域,以生成定性变量。这具有拟合分段常数函数的效果。 回归样条  比多项式和阶跃函数更灵活,并且实际上是两者的扩展。 ...事实证明,我们实际上可以非常有效地计算LOOCV,以平滑样条曲线,回归样条曲线和其他任意基函数。 平滑样条线通常比回归样条线更可取,因为它们通常会创建更简单的模型并具有可比的拟合度。...我们不需要对每个变量分别尝试许多不同的转换。 非线性拟合可以潜在地对响应Y做出更准确的预测  。 因为模型是可加的,所以我们仍然可以检查每个预测变量对Y的影响,   同时保持其他变量不变。...我们也可以拟合平滑样条。在这里,我们拟合具有16个自由度的样条曲线,然后通过交叉验证选择样条曲线,从而产生6.8个自由度。...GAMs 现在,我们使用GAM通过年份,年龄和受教育程度的自然样条来预测工资。由于这只是具有多个基本函数的线性回归模型,因此我们仅使用该  lm() 函数。

4.5K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    手把手教你用Python进行回归(附代码、学习资料)

    样条回归法及其实现 为了克服多项式回归的缺点,我们可以用另外一种改进的回归方法。这种方法没有将模型应用到整个数据集中,而是将数据集划分到多个区间,为每个区间中的数据单独拟合一个模型。...一个分段三次多项式,在点C处存在节点,那么它会具有以下形式: ? 换句话说,我们在数据上拟合了两个不同的三次多项式:一个应用于满足Xi的数据,另一个应用于Xi>C的那部分。...一般来说,如果我们在X的范围内设置K个不同的节点,最终会拟合K+1个不同的三次多项式。 而且我们其实可以使用任何低阶的多项式来拟合某一段的数据。...这次的结果看起来真的是好多了。它进一步将自由度下降为6个。像这样具有m-1阶连续导数的m阶多项式被称为样条。所以,在上边的图中,我们实际上是建立了一个三次样条。...三次样条和自然三次样条 三次样条是具有一组额外约束(连续性、一阶导数连续性、二阶导数连续性)的分段多项式。通常,一个有K个节点的三次样条其自由度是4+K。

    4.1K60

    【视频】什么是非线性模型与R语言多项式回归、局部平滑样条、 广义相加GAM分析工资数据|数据分享

    本文本专注于线性模型的扩展 _多项式回归_ 这是对数据提供非线性拟合的简单方法。 _阶跃函数_ 将变量的范围划分为 _K个_ 不同的区域,以生成定性变量。这具有拟合分段常数函数的效果。..._平滑样条曲线_ 也类似于回归样条曲线,但是它们最小化平滑度惩罚的残差平方和准则 。 _广义加性模型_ 允许扩展上述方法以处理多个预测变量。 多项式回归 这是扩展线性模型的最传统方法。...事实证明,我们实际上可以非常有效地计算LOOCV,以平滑样条曲线,回归样条曲线和其他任意基函数。 平滑样条线通常比回归样条线更可取,因为它们通常会创建更简单的模型并具有可比的拟合度。...在这里,我们拟合具有16个自由度的样条曲线,然后通过交叉验证选择样条曲线,从而产生6.8个自由度。 2. fit2$df 4. ## [1] 6.795 5....GAMs 现在,我们使用GAM通过年份,年龄和受教育程度的样条来预测工资。由于这只是具有多个基本函数的线性回归模型,因此我们仅使用 lm() 函数。

    35931

    【视频】什么是非线性模型与R语言多项式回归、局部平滑样条、 广义相加GAM分析工资数据|数据分享|附代码数据

    本文本专注于线性模型的扩展 多项式回归    这是对数据提供非线性拟合的简单方法。 阶跃函数  将变量的范围划分为  K个  不同的区域,以生成定性变量。这具有拟合分段常数函数的效果。...平滑样条曲线  也类似于回归样条曲线,但是它们最小化平滑度惩罚的残差平方和准则 。 广义加性模型  允许扩展上述方法以处理多个预测变量。 多项式回归 这是扩展线性模型的最传统方法。...事实证明,我们实际上可以非常有效地计算LOOCV,以平滑样条曲线,回归样条曲线和其他任意基函数。 平滑样条线通常比回归样条线更可取,因为它们通常会创建更简单的模型并具有可比的拟合度。.... ## 33.75 42.00 51.00 拟合样条曲线。 我们也可以拟合平滑样条。在这里,我们拟合具有16个自由度的样条曲线,然后通过交叉验证选择样条曲线,从而产生6.8个自由度。 2....GAMs 现在,我们使用GAM通过年份,年龄和受教育程度的样条来预测工资。由于这只是具有多个基本函数的线性回归模型,因此我们仅使用  lm() 函数。

    45000

    【视频】什么是非线性模型与R语言多项式回归、局部平滑样条、 广义相加GAM分析工资数据|数据分享|附代码数据

    本文本专注于线性模型的扩展 多项式回归    这是对数据提供非线性拟合的简单方法。 阶跃函数  将变量的范围划分为  K个  不同的区域,以生成定性变量。这具有拟合分段常数函数的效果。...平滑样条曲线  也类似于回归样条曲线,但是它们最小化平滑度惩罚的残差平方和准则 。 广义加性模型  允许扩展上述方法以处理多个预测变量。 多项式回归 这是扩展线性模型的最传统方法。...事实证明,我们实际上可以非常有效地计算LOOCV,以平滑样条曲线,回归样条曲线和其他任意基函数。 平滑样条线通常比回归样条线更可取,因为它们通常会创建更简单的模型并具有可比的拟合度。.... ## 33.75 42.00 51.00 拟合样条曲线。 我们也可以拟合平滑样条。在这里,我们拟合具有16个自由度的样条曲线,然后通过交叉验证选择样条曲线,从而产生6.8个自由度。 2....GAMs 现在,我们使用GAM通过年份,年龄和受教育程度的样条来预测工资。由于这只是具有多个基本函数的线性回归模型,因此我们仅使用  lm() 函数。

    76230

    【视频】什么是非线性模型与R语言多项式回归、局部平滑样条、 广义相加GAM分析工资数据|数据分享|附代码数据

    本文本专注于线性模型的扩展 多项式回归    这是对数据提供非线性拟合的简单方法。 阶跃函数  将变量的范围划分为  K个  不同的区域,以生成定性变量。这具有拟合分段常数函数的效果。...平滑样条曲线  也类似于回归样条曲线,但是它们最小化平滑度惩罚的残差平方和准则 。 广义加性模型  允许扩展上述方法以处理多个预测变量。 多项式回归 这是扩展线性模型的最传统方法。...事实证明,我们实际上可以非常有效地计算LOOCV,以平滑样条曲线,回归样条曲线和其他任意基函数。 平滑样条线通常比回归样条线更可取,因为它们通常会创建更简单的模型并具有可比的拟合度。.... ## 33.75 42.00 51.00 拟合样条曲线。 我们也可以拟合平滑样条。在这里,我们拟合具有16个自由度的样条曲线,然后通过交叉验证选择样条曲线,从而产生6.8个自由度。 2....GAMs 现在,我们使用GAM通过年份,年龄和受教育程度的样条来预测工资。由于这只是具有多个基本函数的线性回归模型,因此我们仅使用  lm() 函数。

    1.3K00

    R语言用GAM广义相加模型研究公交专用道对行程时间变异度数据的影响|附代码数据

    现实情况是,我们经常要处理多个自变量和一个因变量之间的关系,此外,虽然通过做散点图可以发现非线性关系,但很难归因其形式,多项式回归在广义线性模型中,由于其不可解释的系数,降低了模型的有用性。...本文使用的广义加性模型提供了一种首选方案来研究多个自变量与因变量之间的关系,而无需事先了解因变量和自变量之间的关系,而是使用非线性平滑项来拟合模型。...GAM模型说明 广义相加模型(GAM:Generalized Additive Model),它模型公式如下:有p个自变量,其中X1与y是线性关系,其他变量与y是非线性关系,我们可以对每个变量与y拟合不同关系...,对X2可以拟合局部回归,X3采用光滑样条,不必采用统一的关系,而最终结果‘加’在一起就可以了。...s()是样条函数,括号里面的数字是定义的自由度,除了使用回归样条,还能使用局部样条lo()函数,得到的结果与上面的结果十分类似。

    13900

    双下降真实发生,UW教授用统计学解释偏差-方差权衡,LeCun转推

    独到的偏差 - 方差权衡解读 上文中的 U 型测试误差曲线基于以下公式: ? 随着灵活性的增加,(平方)偏差减少,方差增加。「sweet spot」需要权衡偏差和方差,即具有中等程度灵活性的模型。...本质上,这是一种拟合模型 Y=f(X)+epsilon 的方法,f 是非参数的,由非常光滑的分段多项式构成。...所用基函数的数量与样条曲线的自由度(degrees of freedom, DF)相同。基函数基本形式如下: ?...这时 p>n,解是不唯一的。为了在无穷多个解中进行选择,Daniela 等人选择了「最小」范数拟合:系数平方和最小的那个(使用了大家最喜欢的矩阵分解 SVD,以实现轻松计算) ?...但是当增加 DF,使得 p>n 时,则会出现大量的插值最小二乘拟合。最小范数的最小二乘拟合是这无数多个拟合中振荡最小的,甚至比 p=n 时的拟合更稳定。

    66820

    R语言用GAM广义相加模型研究公交专用道对行程时间变异度数据的影响

    p=30508 原文出处:拓端数据部落公众号 现实情况是,我们经常要处理多个自变量和一个因变量之间的关系,此外,虽然通过做散点图可以发现非线性关系,但很难归因其形式,多项式回归在广义线性模型中,由于其不可解释的系数...本文使用的广义加性模型提供了一种首选方案来研究多个自变量与因变量之间的关系,而无需事先了解因变量和自变量之间的关系,而是使用非线性平滑项来拟合模型。...GAM模型说明 广义相加模型(GAM:Generalized Additive Model),它模型公式如下:有p个自变量,其中X1与y是线性关系,其他变量与y是非线性关系,我们可以对每个变量与y拟合不同关系...,对X2可以拟合局部回归,X3采用光滑样条,不必采用统一的关系,而最终结果‘加’在一起就可以了。...s()是样条函数,括号里面的数字是定义的自由度,除了使用回归样条,还能使用局部样条lo()函数,得到的结果与上面的结果十分类似。

    33620

    R语言用GAM广义相加模型研究公交专用道对行程时间变异度数据的影响|附代码数据

    现实情况是,我们经常要处理多个自变量和一个因变量之间的关系,此外,虽然通过做散点图可以发现非线性关系,但很难归因其形式,多项式回归在广义线性模型中,由于其不可解释的系数,降低了模型的有用性。...本文使用的广义加性模型提供了一种首选方案来研究多个自变量与因变量之间的关系,而无需事先了解因变量和自变量之间的关系,而是使用非线性平滑项来拟合模型。...GAM模型说明 广义相加模型(GAM:Generalized Additive Model),它模型公式如下:有p个自变量,其中X1与y是线性关系,其他变量与y是非线性关系,我们可以对每个变量与y拟合不同关系...,对X2可以拟合局部回归,X3采用光滑样条,不必采用统一的关系,而最终结果‘加’在一起就可以了。...s()是样条函数,括号里面的数字是定义的自由度,除了使用回归样条,还能使用局部样条lo()函数,得到的结果与上面的结果十分类似。

    23900

    R语言用GAM广义相加模型研究公交专用道对行程时间变异度数据的影响

    p=30508 现实情况是,我们经常要处理多个自变量和一个因变量之间的关系,此外,虽然通过做散点图可以发现非线性关系,但很难归因其形式,多项式回归在广义线性模型中,由于其不可解释的系数,降低了模型的有用性...本文使用的广义加性模型提供了一种首选方案来研究多个自变量与因变量之间的关系,而无需事先了解因变量和自变量之间的关系,而是使用非线性平滑项来拟合模型。...GAM模型说明 广义相加模型(GAM:Generalized Additive Model),它模型公式如下:有p个自变量,其中X1与y是线性关系,其他变量与y是非线性关系,我们可以对每个变量与y拟合不同关系...,对X2可以拟合局部回归,X3采用光滑样条,不必采用统一的关系,而最终结果‘加’在一起就可以了。...调整后的R平方(越高越好),s()是样条函数,括号里面的数字是定义的自由度,除了使用回归样条,还能使用局部样条lo()函数,得到的结果与上面的结果十分类似。

    8200

    R语言分布滞后线性和非线性模型(DLMs和DLNMs)分析时间序列数据

    在这种情况下,我们假设PM10的影响是线性的(fun=“lin”),同时通过一个具有5个自由度的自然三次样条曲线(fun=“ns”,默认选择)来模拟与温度的关系。...这种分析的独特之处在于,假设数据是由不同年份的多个等距有序的多个季节序列组成,而不是一个单一的连续序列。...尽管关系的复杂性更高,但我们将看到指定和拟合模型以及预测结果所需的步骤与之前看到的简单模型完全相同,只需要选择不同的绘图即可。...PM10效应的线性函数和温度5自由度的二次B样条(fun=“bs”),通过函数equalknots()选择,默认情况下,节点放置在预测器空间中的等间距值。...初步解释表明,低温比高温具有更长的死亡风险,但不是立即的,在滞后0时显示出“保护”效应。这种分析能力很难用更简单的模型实现,可能会丢失关联的重要细节。

    2.8K30

    R语言分布滞后线性和非线性模型(DLMs和DLNMs)分析时间序列数据

    在这种情况下,我们假设PM10的影响是线性的(fun=“lin”),同时通过一个具有5个自由度的自然三次样条曲线(fun=“ns”,默认选择)来模拟与温度的关系。...这种分析的独特之处在于,假设数据是由不同年份的多个等距有序的多个季节序列组成,而不是一个单一的连续序列。...尽管关系的复杂性更高,但我们将看到指定和拟合模型以及预测结果所需的步骤与之前看到的简单模型完全相同,只需要选择不同的绘图即可。...PM10效应的线性函数和温度5自由度的二次B样条(fun=“bs”),通过函数equalknots()选择,默认情况下,节点放置在预测器空间中的等间距值。...初步解释表明,低温比高温具有更长的死亡风险,但不是立即的,在滞后0时显示出“保护”效应。这种分析能力很难用更简单的模型实现,可能会丢失关联的重要细节。

    12810

    R语言广义相加模型 (GAMs)分析预测CO2时间序列数据|附代码数据

    理论 让我们从高斯线性模型的方程开始 : GAM中发生的变化是存在光滑项: 这仅意味着对线性预测变量的贡献现在是函数f。从概念上讲,这与使用二次项( )或三次项( )作为预测变量没什么不同。...首先,让我们创建一个数据框,并创建一些具有明显非线性趋势的模拟数据,并比较一些模型对该数据的拟合程度。...“edf”是估计的自由度——本质上,数量越大,拟合模型就越摇摆。大约为1的值趋向于接近线性项。...三次回归样条曲线具有 我们在谈论样条曲线时想到的传统 结点–在这种情况下,它们均匀分布在协变量范围内。...我们为这些数据拟合GAM 它拟合具有单个光滑时间项的模型。我们可以查看以下预测值: plot(CO2_time) 请注意光滑项如何减少到“普通”线性项的(edf为1)-这是惩罚回归样条曲线的优点。

    96000

    R语言lasso惩罚稀疏加法(相加)模型SPAM拟合非线性数据和可视化

    相关视频 通过本文,我们将展示如何帮助客户在R语言中使用LASSO惩罚稀疏加法模型(SPAM)来拟合非线性数据,并进行相应的可视化分析。 本文提供了一个代码来设置、拟合和可视化加法模型。...数值特征会自动使用样条基函数进行扩展。这个基本思想最早是由Ravikumar等人在2009年提出的,他们称之为SPAM,即稀疏加法模型。...生成的对象是一个列表,其中包含扩展矩阵和分组分配,以及一些内部函数所需的元数据。使用具有三个自由度的自然三次样条曲线。...') 在比较这两幅图时,请注意总体轮廓是相同的,唯一不同的是纵轴的值。...进行交叉验证(默认情况下会绘制出使交叉验证误差最小的拟合结果): cvfit <- cv.grp plot_line 最后,这些工具还可用于生存模型和 glm 模型。

    22320

    R语言广义相加模型 (GAMs)分析预测CO2时间序列数据|附代码数据

    理论 让我们从高斯线性模型的方程开始 : GAM中发生的变化是存在光滑项: 这仅意味着对线性预测变量的贡献现在是函数f。从概念上讲,这与使用二次项( )或三次项( )作为预测变量没什么不同。...首先,让我们创建一个数据框,并创建一些具有明显非线性趋势的模拟数据,并比较一些模型对该数据的拟合程度。...“edf”是估计的自由度——本质上,数量越大,拟合模型就越摇摆。大约为1的值趋向于接近线性项。...三次回归样条曲线具有 我们在谈论样条曲线时想到的传统 结点–在这种情况下,它们均匀分布在协变量范围内。...我们为这些数据拟合GAM 它拟合具有单个光滑时间项的模型。我们可以查看以下预测值: plot(CO2_time) 请注意光滑项如何减少到“普通”线性项的(edf为1)-这是惩罚回归样条曲线的优点。

    1K00

    R语言广义相加模型 (GAMs)分析预测CO2时间序列数据|附代码数据

    理论让我们从高斯线性模型的方程开始 :GAM中发生的变化是存在光滑项:这仅意味着对线性预测变量的贡献现在是函数f。从概念上讲,这与使用二次项()或三次项()作为预测变量没什么不同。...首先,让我们创建一个数据框,并创建一些具有明显非线性趋势的模拟数据,并比较一些模型对该数据的拟合程度。...“edf”是估计的自由度——本质上,数量越大,拟合模型就越摇摆。大约为1的值趋向于接近线性项。...三次回归样条曲线具有 我们在谈论样条曲线时想到的传统 结点–在这种情况下,它们均匀分布在协变量范围内。...我们为这些数据拟合GAM它拟合具有单个光滑时间项的模型。我们可以查看以下预测值:plot(CO2_time)请注意光滑项如何减少到“普通”线性项的(edf为1)-这是惩罚回归样条曲线的优点。

    1.2K20

    R语言广义相加模型 (GAMs)分析预测CO2时间序列数据|附代码数据

    从概念上讲,这与使用二次项()或三次项()作为预测变量没什么不同。在这里,我们将重点放在样条曲线上。在过去,它可能类似于分段线性函数。...首先,让我们创建一个数据框,并创建一些具有明显非线性趋势的模拟数据,并比较一些模型对该数据的拟合程度。...“edf”是估计的自由度——本质上,数量越大,拟合模型就越摇摆。大约为1的值趋向于接近线性项。...三次回归样条曲线具有 我们在谈论样条曲线时想到的传统 结点–在这种情况下,它们均匀分布在协变量范围内。...我们为这些数据拟合GAM它拟合具有单个光滑时间项的模型。我们可以查看以下预测值:plot(CO2_time)请注意光滑项如何减少到“普通”线性项的(edf为1)-这是惩罚回归样条曲线的优点。

    1.9K20
    领券