列颜色设置: *------------------------定义宏--------------------* DEFINE INIT_FIELDCAT. CLEAR GS_FIELDCAT. ..."ALV 控制: 列标题 GS_FIELDCAT-EDIT = &3." 是否可编辑 case &1. when 'VBELN'. ...行颜色设置: FORM FRM_DEALDATA ....行颜色 ENDFORM. 单元格颜色设置: types:FIELD_COLOR TYPE LVC_T_SCOL, "单元格颜色 FORM FRM_DEALDATA ....单元格颜色 ENDFORM.
大家好,又见面了,我是你们的朋友全栈君。...按行存储:数据按行存储在底层文件系统中,通常,每一行会被分配固定的空间 优点:有利于增加、修改整行记录等操作,有利于整行数据的读取操作 缺点:单列查询时,会读取一些不必要的数据 按列存储 :数据以列为单位...,存储在底层文件系统中 优点:有利于面向单列数据的读取/统计等操作 缺点:整行读取时,可能需要多次I/O操作 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/159308
而在SQL面试中,一道出镜频率很高的题目就是行转列和列转行的问题,可以说这也是一道经典的SQL题目,本文就这一问题做以介绍分享。 ? 给定如下模拟数据集,这也是SQL领域经典的学生成绩表问题。...由多行变一行,那么直觉想到的就是要groupby聚合;由一列变多列,那么就涉及到衍生提取; 既然要用groupby聚合,那么就涉及到将多门课的成绩汇总,但现在需要的不是所有成绩汇总,而仍然是各门课的独立成绩...其中,if(course='语文', score, NULL)语句实现了当且仅当课程为语文时取值为课程成绩,否则取值为空,这相当于衍生了一个新的列字段,且对于每个uid而言,其所有成绩就只有特定课程的结果非空...02 列转行:union 列转行是上述过程的逆过程,所以其思路也比较直观: 行记录由一行变为多行,列字段由多列变为单列; 一行变多行需要复制,列字段由多列变单列相当于是堆积的过程,其实也可以看做是复制;...,然后将该列命名为course;第二个用反引号包裹起来的课程名实际上是从宽表中引用这一列的取值,然后将其命名为score。
行转列,列转行是我们在开发过程中经常碰到的问题。行转列一般通过CASE WHEN 语句来实现,也可以通过 SQL SERVER 的运算符PIVOT来实现。用传统的方法,比较好理解。...但是PIVOT 、UNPIVOT提供的语法比一系列复杂的SELECT…CASE 语句中所指定的语法更简单、更具可读性。下面我们通过几个简单的例子来介绍一下列转行、行转列问题。...这也是一个典型的行转列的例子。...您可能需要将当前数据库的兼容级别设置为更高的值,以启用此功能。有关存储过程 sp_dbcmptlevel 的信息,请参见帮助。...这个是因为:对升级到 SQL Server 2005 或更高版本的数据库使用 PIVOT 和 UNPIVOT 时,必须将数据库的兼容级别设置为 90 或更高。
一、前言 前几天在Python铂金交流群【逆光】问了一个Pandas数据处理的问题,问题如下:请问 合并excel的两列,为空的单元格被另一列有值的替换。...【逆光】:好的,我去看看这个函数谢谢 【逆光】:我列表的两列不挨着, a b互补,我需要变成c (c 包含 a 和 b) 【Siris】:最笨的方法遍历判断呗 【逆光】:太慢了,我的数据有点多。...【Siris】:你是说c列是a列和b列的内容拼接起来是么 【逆光】:是 【Siris】:那你其实可以直接在excel里用CONCAT函数。 【不上班能干啥!】:只在excel里操作,速度基本没啥改变。...我不写,就报这个错 【瑜亮老师】:有很多种写法,最简单的思路是分成3行代码。就是你要给哪一列全部赋值为相同的值,就写df['列名'] = '值'。不要加方括号,如果是数字,就不要加引号。...这篇文章主要盘点了一个Pandas数据处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。
参考链接: 在Pandas DataFrame中处理行和列 在print时候,df总是因为数据量过多而显示不完整。 ...解决方法如下: #显示所有列 pd.set_option('display.max_columns', None) #显示所有行 pd.set_option('display.max_rows', None...) #设置value的显示长度为100,默认为50 pd.set_option('max_colwidth',100) 可以参看官网上的资料,自行选择需要修改的参数: https://pandas.pydata.org
把数据集( dataset )的行或列映射为系列(series) 用户可以使用 seriesLayoutBy 配置项,改变图表对于行列的理解。...seriesLayoutBy 可取值: ’column’: 默认值。系列被安放到 dataset 的列上面。 ‘row’: 系列被安放到 dataset 的行上面。 把数据集( dataset )的行或列映射为系列(...{top: '55%'} ], series: [ // 这几个系列会在第一个直角坐标系中,每个系列对应到 dataset 的每一行..., {type: 'bar', seriesLayoutBy: 'row'}, // 这几个系列会在第二个直角坐标系中,每个系列对应到 dataset 的每一列
我们发现,按行存储的数据,最多能有5-10%的压缩比例; 2. 对于许多2K 和4K 的二进制数据页来说,为压缩和解压缩而增加的开销太大; 3. 在OLTP 环境中,大量读取和更新混杂在一起。...对于列存储而言, 该查询可转化为如下形式: Ci 是查询相关的列, 如果Ck 上不存在选择谓词,设σ(Ck)为true。...Fij 是连接条件, 如果Ci、Cj 上不存在连接谓词, 设Fij 为true。对于n 个节点的查询树来说, 列之间连接方法有种。...图 6 算法中2~5 行代码处理T 空间的中间节点, 为每个连接节点评估串行连接和并行连接的 I/O, 选取产生较小I/O 的连接方式。...同时, 提出了基于代价的优化连接策略选择方法, 它针对数据按列存储后并行连接和串行连接两种策略进行代价估计和策略的选择, 充分利用了串行连接和并行连接各自的优势, 为列存储的查询优化提出了新的策略。
如下图1所示,活动单元格显示一种颜色,其所在的行和列显示另一种颜色。 ? 图1 这是怎么实现的呢?公式+条件格式+VBA。 首先,单击工作表左上角的交叉区域,选中工作表所有单元格。...然后,单击功能区“开始”选项卡的“条件格式—新建规则”,在弹出的“新建格式规则”对话框的“选择规则类型”中选择“使用公式确定要设置格式的单元格”,在“为符合此公式的值设置格式”中输入公式: =CELL(...3所示,在活动单元格所在的行会高亮显示。...图3 如前所述,单击工作表左上角的交叉区域,选中工作表所有单元格。按上述操作,设置条件格式,如下图4所示。 ? 图4 此时的效果如下图5所示,活动单元格所在的行列都高亮显示。 ?...图6 使用的公式为: =AND(CELL(“col”)=COLUMN(),CELL(“row”)=ROW()) 设置完成后,效果如下图7所示。 ?
今天没有学员提问 只有同事点名 怎么一键取消隐藏的行和列 假设一个表是这样的 我们看到不连续的字母和数字 就知道它有隐藏行列了 如何快速取消隐藏呢 直接上GIF 第一步 点击A和1的交界处全选...第二步 点击开始->格式->隐藏和取消隐藏->取消隐藏行/列 还有一种比较高端的方法 写VBA Sub showAll() Cells.Rows.Hidden = 0 Cells.Columns.Hidden
时间:2011-06-10 博客:http://blog.csdn.net/wwwwgou --============================================== --1.行转列...行转列字段值固定. --1.case when SELECT [name], [type1] = SUM(CASE [type] WHEN N'type1' THEN [amount] ELSE 0...行转列字段值不固定,只能拼SQL了. --1.case when DECLARE @sql NVARCHAR(MAX) SET @sql = N'' SELECT @sql = @sql + N', '...(SELECT DISTINCT ','+QUOTENAME([type]) FROM #temp FOR XML PATH('')),1,1,'') +N')) b' EXEC(@sql) --2.列转行...name], type1, type2 FROM #temp) a UNPIVOT ([amount] FOR [type] IN([type1],[type2])) b 今天文章到此就结束了,感谢您的阅读好运
前言我们上篇文章简单的介绍了如何获取行和列的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定列的数据我们依然使用之前的数据。...我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...大家还记得它们的区别吗?可以看看上一篇文章的内容。同样我们可以利用切片方法获取类似前4列这样的数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一列也计算在内了。...接下来我们再看看获取指定行指定列的数据df.loc[2, "2022年"]是不是很简单,大家要注意的是,这里的2并不算是所以哦,而是行名称,只不过是用了padnas自动帮我创建的行名称。...通常是建议这样获取的,因为从代码的可读性上更容易知道我们获取的是哪一行哪一列。当然我们也可以通过索引和切片的方式获取,只是可读性上没有这么好。
1 为什么要按列存储 列式存储(Columnar or column-based)是相对于传统关系型数据库的行式存储(Row-basedstorage)来说的。...下面来看一个例子: 从上图可以很清楚地看到,行式存储下一张表的数据都是放在一起的,但列式存储下都被分开保存了。...所以它们就有了如下这些优缺点: 行式存储 列式存储 优点 Ø 数据被保存在一起 Ø INSERT/UPDATE容易 Ø 查询时只有涉及到的列会被读取 Ø 投影(projection)很高效...关系型数据库理论回顾 – 选择(Selection)和投影(Projection) 2补充:数据压缩 刚才其实跳过了资料里提到的另一种技术:通过字典表压缩数据。...正因为每个字符串在字典表里只出现一次了,所以达到了压缩的目的(有点像规范化和非规范化Normalize和Denomalize) 3查询执行性能 下面就是最牛的图了,通过一条查询的执行过程说明列式存储
一、前言 前几天在Python钻石群有个叫【有点意思】的粉丝问了一道关于pandas中字符串拼接问题,如下图所示。...实现过程 这里【月神】给了一份代码,如下所示: c2['a_new'] = c2['a'] + ('_' + c2['a_1']) * c2['a_bool'] 代码运行之后,结果如下图所示: 好牛逼的解法...其实关于布尔值的用法解析,在之前的文章中,我也有写过,Python中的and和or,结果让人出乎意料之外,最开始是【小小明】大佬启蒙,之后【瑜亮老师】给我们启蒙,现在大家也都拓展了思路,下次遇到了,就可以多一个思路了...这篇文章主要盘点一个字符串拼接的问题,借助布尔值本身就是0和1的规律,直接进行运算,拓展了粉丝的思路!如果你还有其他方法,也欢迎大家积极尝试,一起学习,记得分享给我哦。...最后感谢粉丝【有点意思】提问,感谢【月神】在运行过程中给出的思路和代码建议,感谢粉丝【dcpeng】等人参与学习交流。
本文将详细介绍MySQL中的行转列和列转行操作,并提供相应的SQL语句进行操作。行转列行转列操作指的是将表格中一行数据转换为多列数据的操作。在MySQL中,可以通过以下两种方式进行行转列操作。1....列转行列转行操作指的是将表格中多列数据转换为一行数据的操作。在MySQL中,可以通过以下两种方式进行列转行操作。1....., [columnN])) AS unpivot_table;其中,identifier_column是唯一标识每个转换后的行的列,pivot_column是需要将其转换为行的列,value_column...结论MySQL中的行转列和列转行操作都具有广泛的应用场景,能够满足各种分析和报表需求。在实际应用中,可以根据具体的需求选择相应的MySQL函数或编写自定义SQL语句进行操作。...需要注意的是,在进行行转列和列转行操作时,要考虑到数据的准确性和可读性,避免数据丢失和混淆。
大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...目录 1.loc方法 (1)读取第二行的值 (2)读取第二列的值 (3)同时读取某行某列 (4)读取DataFrame的某个区域 (5)根据条件读取 (6)也可以进行切片操作 2.iloc方法 (1)...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...,"D","E"]] 结果: 2.iloc方法 iloc方法是通过索引行、列的索引位置[index, columns]来寻找值 (1)读取第二行的值 # 读取第二行的值,与loc方法一样 data1...和columns进行切片操作 # 读取第2、3行,第3、4列 data1 = data.iloc[1:3, 2:4] 结果: 注意: 这里的区间是左闭右开,data.iloc[1:
在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...想想如何在Excel中引用单元格,例如单元格“C10”或单元格区域“C10:E20”。以下两种方法都遵循这种行和列的思想。 方括号表示法 使用方括号表示法,语法如下:df[列名][行索引]。
我们在多条件求和时,由于条件不定,想组和条件为dic 的key,我想达到的目的是,任意输入标题,查找到标题所在列,再循环数据,把所在的列组合为dic 的 key ,再进行求和或计数, 今天自定义一个函数
Python特别灵活,肯定方法不止一种,这里介绍一种我觉得比较简单的方法。...如下图,使用x == np.max(x) 获得一个掩模矩阵,然后使用where方法即可返回最大值对应的行和列。 where返回一个长度为2的元组,第一个元素保存的是行号,第二个元素保存的是列号。
领取专属 10元无门槛券
手把手带您无忧上云