首页
学习
活动
专区
圈层
工具
发布

【愚公系列】2023年07月 Pandas数据分析之展示

Pandas可以一步完成。 3.按多列排序 如果我们需要使用weight列来对价格列进行排序,情况会变得更糟。...5.快速元素搜索 在NumPy数组中,即使你查找的是第一个元素,你仍然需要与数组大小成正比的时间来查找它。使用Pandas,你可以索引你期望被查询最多的列,并将搜索时间减少到一个常量。...6.按列连接(join) 如果你想从另一张表中获取基于同一列的信息,NumPy几乎没有任何帮助。Pandas更好,特别是对于1:n的关系。...7.按列分组 数据分析中的另一个常见操作是按列分组。...Pandas需要NaNs (not-a-number)来实现所有这些类似数据库的机制,比如分组和旋转,而且这在现实世界中是很常见的。

9110

【无痛学Python】Pandas统计分析基础,看这一篇就够了!

sort_values() 对索引进行排序 sortlevel() 按多级索引的某一层排序 唯一性与重复性 unique() 返回索引中的唯一值 duplicated() 标记重复值 其他 copy...D.布尔选择 在Pandas中可以使用逻辑运算符实现布尔选择。 2.DataFrame数据的编辑 这一部分就涉及到经典的 增删改 操作。注意在Pandas中,我们要先将数据提取出来,再进行编辑。...对于DataFrame 通过指定轴的方向,使用: sort_index:对行或列的索引进行排序 sort_values:将列名传给by参数进行列排序 汇总与统计 数据汇总 使用sum方法,默认对每列进行汇总...在Pandas中可以使用groupby方法来进行数据分组操作。 数据分组后返回的数据类型不再是一个数据框,而是一个groupby对象。...5.按函数分组 函数作为分组键的原理类似于字典,使用映射关系来进行分组。 数据聚合 数据聚合就是对分组后的数据进行计算,产生标量值的数据转换过程。

35510
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas.DataFrame()入门

    访问列和行:使用列标签和行索引可以访问​​DataFrame​​中的特定列和行。增加和删除列:使用​​assign()​​方法可以添加新的列,使用​​drop()​​方法可以删除现有的列。...数据过滤和选择:使用条件语句和逻辑操作符可以对​​DataFrame​​中的数据进行过滤和选择。数据排序:使用​​sort_values()​​方法可以对​​DataFrame​​进行按列排序。...通过学习和熟悉pandas的​​DataFrame​​类,您可以更好地进行数据处理、数据清洗和数据分析。希望本文对您有所帮助,使您能够更好地使用pandas进行数据科学工作。...接下来,我们使用​​groupby()​​方法对产品进行分组,并使用​​agg()​​方法计算每个产品的销售数量和总销售额。...这个示例展示了使用​​pandas.DataFrame()​​函数进行数据分析的一个实际应用场景,通过对销售数据进行分组、聚合和计算,我们可以得到对销售情况的一些统计指标,进而进行业务决策和分析。

    67610

    Python 数据处理:Pandas库的使用

    (pop1) print(frame3) 也可以使用类似 NumPy 数组的方法,对DataFrame进行转置(交换行和列): import pandas as pd pop1 = {'Nevada...---- 2.6 算术运算和数据对齐 Pandas 最重要的一个功能是,它可以对不同索引的对象进行算术运算。在将对象相加时,如果存在不同的索引对,则结果的索引就是该索引对的并集。...时,你可能希望根据一个或多个列中的值进行排序。...选项: 方法 描述 'average' 默认:在相等分组中,为各个值分配平均排名 'min' 使用整个分组的最小排名 'max' 使用整个分组的最大排名 'first' 按值在原始数据中的出现顺序分配排名...计算Series中的唯一值数组,按发现的顺序返回 value_counts 返回一个Series,其索引为唯一值,其值为频率,按计数值降序排列 有时,你可能希望得到DataFrame中多个相关列的一张柱状图

    24K10

    python数据分析——数据分类汇总与统计

    语法 Pandas中的Groupby是一个强大的功能,用于将数据集按照指定的条件进行分组和聚合操作。它类似于SQL中的GROUP BY语句,可以对数据进行分组并对每个组进行统计、计算或其他操作。...按列分组 按列分组分为以下三种模式: df.groupby(col),返回一个按列进行分组的groupby对象; df.groupby([col1,col2]),返回一个按多列进行分组的groupby...示例 【例4】对groupby对象进行迭代,并打印出分组名称和每组元素。 关键技术:采用for函数进行遍历, name表示分组名称, group表示分组数据。...max():计算每个分组中的所有值的最大值。 std():计算每个分组中的所有值的标准差。 var():计算每个分组中的所有值的方差。 size():计算每个分组中的元素数量。...首先,编写一个选取指定列具有最大值的行的函数: 现在,如果对smoker分组并用该函数调用apply,就会得到: top函数在DataFrame的各个片段调用,然后结果由pandas.concat

    1.5K10

    pandas transform 数据转换的 4 个常用技巧!

    axis是指要应用到哪个轴,0代表列,1代表行。 1. 普通函数 func可以是我们正常使用的普通函数,像下面例子这样自定义一个函数。...但其实用transform可以直接代替前面两个步骤(分组求和、合并),简单明了。 首先,用transform结合groupby按城市分组计算销售总和。...df[df.groupby('city')['sales'].transform('sum') > 40] 上面结果来看,并没有生成新的列,而是通过汇总计算求和直接对原表进行了筛选,非常优雅。...1, np.nan, np.nan, 2, 8, 2, np.nan, 3] }) 在上面的示例中,数据可以按name分为三组A、B、C,每组都有缺失值。...我们知道替换缺失值的常见的方法是用mean替换NaN。下面是每个组中的平均值。

    57720

    pandas技巧4

    形式返回多列 s.iloc[0] # 按位置选取数据 s.loc['index_one'] # 按索引选取数据 df.iloc[0,:] # 返回第一行 df.iloc[0,0] # 返回第一列的第一个元素...,后按col2降序排列数据 df.groupby(col) # 返回一个按列col进行分组的Groupby对象 df.groupby([col1,col2]) # 返回一个按多列进行分组的Groupby...对象 df.groupby(col1)[col2].agg(mean) # 返回按列col1进行分组后,列col2的均值,agg可以接受列表参数,agg([len,np.mean]) df.pivot_table...(index=col1, values=[col2,col3], aggfunc={col2:max,col3:[ma,min]}) # 创建一个按列col1进行分组,计算col2的最大值和col3的最大值...]) data.apply(np.mean) # 对DataFrame中的每一列应用函数np.mean data.apply(np.max,axis=1) # 对DataFrame中的每一行应用函数np.max

    3.8K20

    Pandas中的这3个函数,没想到竟成了我数据处理的主力

    应用到DataFrame的每个Series DataFrame是pandas中的核心数据结构,其每一行和每一列都是一个Series数据类型。...②然后来一个按行方向处理的例子,例如根据性别和年龄,区分4类人群:即女孩、成年女子、男孩、成年男子,其中年龄以18岁为界值进行区分。...为实现这一数据统计,则首先应以舱位等级作为分组字段进行分组,而后对每个分组内的数据进行聚合统计,示例代码如下: ?...而在Pandas框架中,这两种含义都有所体现:对一个Series对象的每个元素实现字典映射或者函数变换,其中后者与apply应用于Series的用法完全一致,而前者则仅仅是简单将函数参数替换为字典变量即可...而且不仅可作用于普通的Series类型,也可用于索引列的变换,而索引列的变换是apply所不能应用的; applymap仅可用于DataFrame,接收一个函数实现对所有数据实现元素级的变换

    2.7K10

    一句Python,一句R︱pandas模块——高级版data.frame

    pandas 约定俗成的导入方法如下: 神奇的axis=0/1 : 合并的时候,axis=0代表rbinb,axis=1代表cbind; 单个dataframe时候,axis=0代表列,axis=1代表行...若要按值对 Series 进行排序,当使用 .order() 方法,任何缺失值默认都会被放到 Series 的末尾。...然后sorted代表对第一列进行排序; a.ix[:,1]-1 代表排好的秩,-1就还原到数据可以认识的索引。...) =R=apply(df,2,mean) #df中的pop,按列求均值,skipna代表是否跳过均值 这个跟apply很像,返回的是按列求平均。...cut使用方式有以下几种(来源:pandas 数据规整): (1)按序列划分,序列:按序列的元素间隔划分 x,返回 x 各个元素的分组情况 >>> bins = [0,3,6,9] >>> ser

    5.1K40

    使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列

    一、前言 前几天在Python钻石交流群【瑜亮老师】给大家出了一道Pandas数据处理题目,使用Pandas完成下面的数据操作:把data列中的元素,按照它们出现的先后顺序进行分组排列,结果如new列中展示...import pandas as pd df = pd.DataFrame({ 'data': ['A1', 'D3', 'B2', 'C4', 'A1', 'A2', 'B2', 'B3',...new列为data列分组排序后的结果 print(df) 结果如下图所示: 二、实现过程 方法一 这里【猫药师Kelly】给出了一个解答,代码和结果如下图所示。...,代码如下图所示: import pandas as pd df = pd.DataFrame({ 'data': ['A1', 'D3', 'B2', 'C4', 'A1', 'A2', '...这篇文章主要盘点了使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列的问题,文中针对该问题给出了具体的解析和代码演示,一共6个方法,欢迎一起学习交流,我相信还有其他方法,

    2.8K10

    按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值

    一、前言 前几天在Python星耀交流群有个叫【在下不才】的粉丝问了一个Pandas的问题,按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值,这里拿出来给大家分享下,一起学习...return arr - arr.mean() # 按照"lv"列进行分组并计算出"num"列每个分组的平均值,然后"num"列内的每个元素减去分组平均值 df["juncha"] = df.groupby...(输入是num列,输出也是一列),代码如下: import pandas as pd lv = [1, 2, 2, 3, 3, 4, 2, 3, 3, 3, 3] num = [122, 111, 222...df.groupby('lv')["num"].transform('mean') df["juncha"] = df["num"] - df["gp_mean"] print(df) # 直接输出结果,省略分组平均值列...这篇文章主要分享了Pandas处理相关知识,基于粉丝提出的按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值的问题,给出了3个行之有效的方法,帮助粉丝顺利解决了问题。

    3.8K20

    使用 Python 对相似索引元素上的记录进行分组

    在 Python 中,可以使用 pandas 和 numpy 等库对类似索引元素上的记录进行分组,这些库提供了多个函数来执行分组。基于相似索引元素的记录分组用于数据分析和操作。...在本文中,我们将了解并实现各种方法对相似索引元素上的记录进行分组。 方法一:使用熊猫分组() Pandas 是一个强大的数据操作和分析库。...语法 grouped = df.groupby(key) 在这里,Pandas GroupBy 方法用于基于一个或多个键对数据帧中的数据进行分组。“key”参数表示数据分组所依据的一个或多个列。...生成的“分组”对象可用于分别对每个组执行操作和计算。 例 在下面的示例中,我们使用 groupby() 函数按“名称”列对记录进行分组。然后,我们使用 mean() 函数计算每个学生的平均分数。...Python 方法和库来基于相似的索引元素对记录进行分组。

    1.4K30

    python数据科学系列:pandas入门详细教程

    自然毫无悬念 dataframe:无法访问单个元素,只能返回一列、多列或多行:单值或多值(多个列名组成的列表)访问时按列进行查询,单值访问不存在列名歧义时还可直接用属性符号" ....query,按列对dataframe执行条件查询,一般可用常规的条件查询替代 ?...,可通过axis参数设置是按行删除还是按列删除 替换,replace,非常强大的功能,对series或dataframe中每个元素执行按条件替换操作,还可开启正则表达式功能 2 数值计算 由于pandas...是在numpy的基础上实现的,所以numpy的常用数值计算操作在pandas中也适用: 通函数ufunc,即可以像操作标量一样对series或dataframe中的所有元素执行同一操作,这与numpy...4 合并与拼接 pandas中又一个重量级数据处理功能是对多个dataframe进行合并与拼接,对应SQL中两个非常重要的操作:union和join。

    19.1K21
    领券