作者:杰少
CVR预估中的延迟反馈问题
在很多推荐搜索的建模中,我们经常会使用D+1天的数据作为label,从1~D天的数据中的进行特征抽取等工作,和我们时间序列问题建模类似,但和很多其他的时间序列问题建模不一样的地方在于...,我们的label不一定可靠,比如在传统的时间序列回归中,D+1天的销量是多少就是多少,我们没有太多的犹豫,因为不大会有其他的情况。...这在搜索推荐系统中,我们称之为延迟反馈的问题。
炼
问题严峻性
看到这么个描述,我们似乎有了一个直观的理解,但是可能并不会过于重视,我们直观感受是,是的,但是可能比例不会很高吧,有必要重视吗?...在广告推荐中,有一个指标价值是非常大的,
eCPM=CPA∗P(conversion,click)=CPA∗P(click)∗P(conversion|click),
CPA: Cost per conversion...当然直观的看本文的方案,我们也可以看到本文的几点不足,我们假设发生转化的延迟时间为指数分布,这种假设可能还不够宽泛;能否替换为其他的更好的函数值得考虑。