导语 笔者对各大厂商CTR预估模型的优缺点进行对比,并结合自身的使用和理解,梳理出一条CTR预估模型的发展脉络,希望帮助到有需要的同学。 0. 提纲 1. 背景 2. 扶持力度用于调节各个广告渠道 ) 互联网公司根据各自业务的特点,研发出了各种各样的 CTR 预估模型及其变种,本文尝试在众多流派和分支中梳理出一条 CTR 预估模型的发展脉络。 2. LR 海量高纬离散特征 (广点通精排) LR(逻辑回归)1可以称之上是 CTR 预估模型的开山鼻祖,也是工业界使用最为广泛的 CTR 预估模型。 LR 是广义线性模型,与传统线性模型相比,LR 使用了 Logit 变换将函数值映射到 0~1 区间,映射后的函数值就是 CTR 的预估值。 所以在 CTR 预估模型的早期,主要工作就是在做人工特征工程。人工特征工程不但极为繁琐,还需要大量的领域知识和试错。
CTR预估系列家谱 ? 炼丹之前,先放一张CTR预估系列的家谱,让脉络更加清晰。 (一)FiBiNET:结合特征重要性和双线性特征交互进行CTR预估 ? (二)DSIN:利用用户时序行为中兴趣变化进行CTR预估 ? 2.0 前言 在读本文之前,我们需要先搞清楚两个概念,Sequence和Sessions。 相比于常用的AUC,在CTR预估场景中,不同的用户之间存在着差异,这种差异可以理解为一个闲逛的购物者和一个要买小米手机的购物者间的差异。 CTR预估场景下,构造的模型越复杂参数越多,越容易过拟合。实际场景中,存在着大量的长尾数据,这些数据的存在一方面在训练过程中增加了复杂度,另一方面在结果上产生了过拟合。 12.1 背景 CTR预估领域面临着诸多挑战,输入特征的稀疏高维问题,高阶特征的计算复杂度问题等。
领8888元新春采购礼包,抢爆款2核2G云服务器95元/年起,个人开发者加享折上折
最近一段日子,怎么在一个大的新闻候选集合(假设有10w条新闻)选出用来做 CTR 预估的小集合(假设是100条新闻)困扰我们已久,昨夜我夜观星象,突来灵感,遂有此文。 废话,不选个小集合 CTR 预估怎么算得过来。好,那么目的一便是确定一个精简的集合以使 CTR 预估能在线上实时响应。再进一步思考,这100条新闻要是怎么样的新闻? (假设有若干个理由),以减小容易被点击新闻没有进入 CTR 预估流程的概率 顺着这样的思路,我整理出如下图的候选集触发方案: ? 下面分别进行介绍: 候选集触发 在此候选集触发方案中,不仅满足上述 “准确率高” 和 “覆盖率高” 两原则,并且各个方案之间可以弥补各自的缺陷。 这样虽然候选集并不是实时更新,但用户的属性是实时更新的,由于 CTR 预估是实时计算的,这样最终的推荐结果也是实时改变着 参考: http://toutiao.com/i6234278051245457921
导读:本文主要介绍深度CTR经典预估模型的演化之路以及在2019工业界的最新进展。 )预估是一个重要问题。 在CTR预估任务中(以下简称CTR任务),我们通常利用user信息、item信息和context信息来预测user对item的CTR。 传统CTR预估任务采用的方法不外乎特征工程+LR/FM的组合,这种通过大量特征工程来提高预测效果的工作费时费力,且构造过程不具有通用性。 此外,在CTR任务中特征常以分组(group, 有时也称领域field)的离散特征信息,如user gender、item category等,在从FM推演各深度学习CTR预估模型(附代码)[1]中提到
在计算广告和推荐系统中,点击率(Click Through Rate,以下简称CTR)预估是一个重要问题。 在CTR预估任务中(以下简称CTR任务),我们通常利用user信息、item信息和context信息来预测user对item的CTR。 传统CTR预估任务采用的方法不外乎特征工程+LR/FM的组合,这种通过大量特征工程来提高预测效果的工作费时费力,且构造过程不具有通用性。 深度CTR模型的基本框架 典型的深度CTR模型可以分成以下四个部分:输入、特征嵌入(Embedding)、特征交互(有时候也称为特征提取)和输出。 此外,在CTR任务中特征常以分组(group, 有时也称领域field)的离散特征信息,如user gender、item category等,在从FM推演各深度学习CTR预估模型(附代码)中提到“将特征具有领域关系的特点作为先验知识加入到神经网络的设计中去
趁今天618剁手节,老shi决定带大家去剁手,哦不,是认识广告CTR预估中非常有名的深度学习模型DeepFM。话不多说,马上进入正题~ ? DeepFM模型最早是哈工大与华为诺亚方舟实验室论文中提出的,众所周知,在广告CTR预估任务中,最重要的是学习到用户点击行为背后隐含的特征组合。 在不同的推荐场景中,低阶组合特征或高阶组合特征都可能会对最终的CTR产生影响。 实验表明DeepFM比大部分CTR预估模型更加有效,并且效率高。 CTR预测学习隐式特征非常重要的一点是学习用户点击行为背后的特征组合。 一般来说,输入数据x是一个高维稀疏向量,而CTR预估的主要任务就是构建一个预测模型,从而预测在特定的情景下用户点击某个产品的概率。 2、FM部分结构图: ?
前深度学习时代 在深度学习还没有引入到点击率(Click-Through Rate,CTR)预估之前,CTR预估的模型大概经历了三个阶段:逻辑回归(Logistic Regression,LR),因子分解机 (Factorization Machine,FM)、梯度提升树(Gradient Boosting Decision Tree,GBDT)。 因此又有人提出了结合一阶和二阶特征的因子分解机模型,该模型相比于LR,增加了交叉特征的构造,性能得到了提升。但是由于FM也只能够做二阶的特征交叉,因此后来又有了梯度提升树的提出。 梯度提升树可以得到更高阶的特征组合,树越深,越高阶。因此通过仔细分析发现,基本上模型的发展有着这么一条规律:往更好地构造高阶特征的发展。 深度学习时代 当把深度学习的方法引入到CTR预估中,可谓是百花齐放,这里举一些经典的网络,像16年发表的论文FNN [1],为了避免完全从随机状态训练Embedding,通过FM的隐层向量作为user和
指标 广告点击率预估是程序化广告交易框架的非常重要的组件,点击率预估主要有两个层次的指标: 1. 排序指标。排序指标是最基本的指标,它决定了我们有没有能力把最合适的广告找出来去呈现给最合适的用户。 最近DNN很热,百度宣布DNN做CTR预估相比LR产生了20%的benefit,我不知道比较的benchmark,但就机理上来讲如果说DNN比原本传统的人工feature engineering的LR高 整个CTR预估模块的框架,包含了exploit/explore的逻辑。 ? 单纯点击率预估算法的框图如下; ? Step-by-step 1. 特征选择指标,特征选择主要有两个目的,一是去除冗余的特征,也就是特征之间可能是互相冗余的;二是去无用,有些特征对CTR预估这个任务贡献度很小或没有,对于这类特征选择,要小小地做,宁不足而不过分,因为单特征对任务贡献度小 预测CTR可信吗? 任何一个特征向量输入到这个CTR预测算法,算法都会像模像样地给你输出一个预测CTR。但这个CTR真的可信吗?
本文以点击率(CTR)预估为例,介绍常用的CTR预估模型,试图找出它们之间的关联和演化规律。 高维、稀疏、多Field是输入给CTR预估模型的特征数据的典型特点。以下介绍的模型都假设特征数据满足上述规律,那些只适用于小规模数据量的模型就不介绍了。 LR模型一直是CTR预估问题的benchmark模型,由于其简单、易于并行化实现、可解释性强等优点而被广泛使用。 通常CTR预估涉及到用户、物品、上下文等几方面的特征,往往单个特征对目标判定的贡献是较弱的,而不同类型的特征组合在一起就能够对目标的判定产生较强的贡献。 总结 主流的CTR预估模型已经从传统的宽度模型向深度模型转变,与之相应的人工特征工程的工作量也逐渐减少。
一般针对类别特征都是通过词嵌入的方法把稀疏特征转化为稠密特征然后再输入到神经网络中,不然直接输入会导致维度爆炸等问题,那么怎样把稠密数据加入到CTR预估网络模型中呢? 常规方法 1. 后续文章会有稠密特征加入CTR模型各个方法的具体实现代码,喜欢就关注一下吧 参考文献 [1] Multi-modal Representation Learning for Short Video Understanding
为什么做CTR预估不得不读呢? 模型解析 xDeepFM的网络框架如下图所示: ? 从实验结果上看,我们发现将Explicit和Implicit的网络结合能带来非常大的提升;xDeepFM相较于DNN有很大的提升。 网络的设置对于模型最终的影响是什么样的? ? 增加网络层的深度可以提升效果, 把网络层数设置为3在数据集上的效果是最好的; 增加CIN中feature maps的个数早期可以提升效果的,太大可能会带来过拟合(例如Dianping数据集,100就可以了 pdf https://github.com/Leavingseason/xDeepFM/blob/master/exdeepfm/src/exDeepFM.py 我是二品炼丹师一元,目前跟着大哥们学习CTR
本文就近几年CTR预估领域中学术界的经典方法进行探究, 并比较各自之间模型设计的初衷和各自优缺点。通过十种不同CTR深度模型的比较,不同的模型本质上都可以由基础的底层组件组成。 对于大多数CTR模型来说,特征体系都极其庞大而且稀疏,典型的特征数量级n从百万级到千万级到亿级甚至更高,这么大规模的n作为网络输入在ctr预估的工业界场景中是不可接受的。 这种product思想来源于,在ctr预估中,认为特征之间的关系更多是一种and“且”的关系,而非add"加”的关系。 这种假设其实是不合理的, 不同特征在做交叉时,对ctr预估结果的贡献度是不一样的。 写在最后 ctr预估领域不像图像、语音等领域具有连续、稠密的数据以及空间、时间等的良好局部相关性,ctr预估中的大多数输入都是离散而且高维的,特征也分散在少量不同的field上。
1背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入。 CTR的预估值。 然而,Facebook和Kaggle竞赛的思路是否能直接满足现在CTR预估场景呢?按照Facebook、Kaggle竞赛的思路,不加入广告侧的AD ID特征? 下面第三部分将介绍针对现有CTR预估场景GBDT+LR的融合方案。 3 GBDT与LR融合方案AD ID类特征在CTR预估中是非常重要的特征,直接将AD ID作为feature进行建树不可行,故考虑为每个AD ID建GBDT树。
前言 CTR预估对于搜索、推荐和广告都是非常重要的一个场景,近年来CTR预估技术更新迭代,层出不穷。这篇文章将记录CTR预估著名模型的相关论文。以下按照年份整理。 1.2020年 (DFN). (UBR4CTR). DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, IJCAI (CCF-A),出自华为和哈尔滨工业大学合作 Field-aware Factorization Machines for CTR Prediction, RecSys, 出自Criteo团队。 (HOFMs).
我们都知道一般单值类别特征加入到CTR预估模型的方法是先对单值类别特征进行one-hot,然后和embedding 矩阵相乘转换成多维稠密特征,如下图 1 所示: ? 上一篇文章稠密特征加入CTR预估模型的方法中又总结了稠密特征加入到CTR预估模型中的方法。 在CTR预估模型中,对这种多值类别特征的常用处理方法总结归纳如下: ▌非加权法 最常规的也最简单的是先对所有‘话题’集合进行one hot编码,然后按照图 1 方式对多值类别特征中的每一项进行稠密特征的转换
腾讯机器翻译(TMT)结合了神经机器翻译和统计机器翻译的优点,从大规模双语语料库自动学习翻译知识,实现从源语言文本到目标语言文本的自动翻译,目前可支持十余种语言的互译。
扫码关注腾讯云开发者
领取腾讯云代金券