首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于OpenCV的图像强度操作

什么是图像强度操作 更改任何通道中的像素值 对图像的数学运算 亮度变化 对比度变化 伽玛操纵 直方图均衡 图像预处理中的滤波等增强 使用OpenCV加载图像 import numpy as np import...使用Opencv向输入图像添加常数 img = cv2.imread(folder_path + "imgs/chapter3/man.jpg", 0); #######################...从该通道中的每个像素中减去均值 方法2(用于深度学习) 将所有图像分割成各自的通道,对于所有图像的每个通道: 为每个图像找到该通道的均值。 查找所有计算出的均值的均值。...对比度 对比度是使对象(或其在图像或显示器中的表示形式)与众不同的亮度或颜色差异。 可视化为图像中最大和最小像素强度之间的差异。 对比度由同一视野内物体的颜色和亮度差异决定。...直方图均衡 直方图 直方图显示事物发生频率的图表。 图像像素直方图表示具有特定强度值的像素的频率。 ? 直方图均衡 直方图均衡用于增强对比度。 此方法增加了图像的整体对比度。 ?

59710

使用 OpenCV 和 Tesseract 对图像中的感兴趣区域 (ROI) 进行 OCR

在这篇文章中,我们将使用 OpenCV 在图像的选定区域上应用 OCR。在本篇文章结束时,我们将能够对输入图像应用自动方向校正、选择感兴趣的区域并将OCR 应用到所选区域。...import ndimage import pytesseract 现在,使用 opencv 的 imread() 方法将图像文件读入 python。...在这里,我们应用两种算法来检测输入图像的方向:Canny 算法(检测图像中的边缘)和 HoughLines(检测线)。 然后我们测量线的角度,并取出角度的中值来估计方向的角度。...然后以这个中间角度旋转图像,将其转换为完美的方向,以便进一步步骤。 不用担心,OpenCV 只需几行代码即可为我们完成这项工作!...下一步是从图像中提取感兴趣的区域。

1.7K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    OpenCV从零基础---检测及分割图像的目标区域

    作者:王抒伟 编辑:王抒伟 算了 爱看多久看多久 零 参考目录: 1.获取图片 2.转换灰度并去噪声 3.提取图像的梯度 4.我们继续去噪声 5.图像形态学(牛逼吧、唬人的) 6.细节刻画 7.找出昆虫区域的轮廓...在用深度学习的时候,比如说面对一张图像,对某个区域感兴趣怎么办? ~.我:他傻啊,切割出来啊,只需要训练感兴趣的部分就好啦。 老师:哎,那你给我一个教程,我正好顺手把他的问题解决了。...三 运行环境: 环境: 例图:谷歌,可爱的虫子–image 软件:Anaconda 4.20,Opencv3.2 OpenCv的安装: 1.1安装Python3.60 1.2下载安装opencv3.2...通过这个操作,会留下具有高水平梯度和低垂直梯度的图像区域。 此时,我们会得到 ? 4.我们继续去噪声 考虑到图像的孔隙 首先使用低通滤泼器平滑图像, 这将有助于平滑图像中的高频噪声。...低通滤波器的目标是降低图像的变化率。 如将每个像素替换为该像素周围像素的均值, 这样就可以平滑并替代那些强度变化明显的区域。

    13K100

    OpenCV中如何正确的给文字区域加上底色

    ,非常清楚的知道各种检测类别跟自信度信息,但是这个可视化显示,OpenCV可以做的非常好,给人很直观的感觉。...图示如下: 如何生成这种显示 OpenCV中有个获取字体跟文本宽高的函数,调用该函数可以获取 Size cv::getTextSize( const String &...返回的参数类型是cv::Szie文本区域的宽度与长度,有这个就可以根据它完成在文本框上方的文字底色矩形区域绘制,然后在把相关的文本通过putText绘制完成,这样就实现了如下图中显示效果 相关的代码显示如下..., fontScale, Scalar(255, 0, 255), thickness, 8); Pytho部分得代码,同样是分为两个部分,实现如下: # 动态合理显示文本区域...OpenCV4.5.4 直接支持YOLOv5 6.1版本模型推理 OpenVINO2021.4+YOLOX目标检测模型部署测试 比YOLOv5还厉害的YOLOX来了,官方支持OpenVINO推理

    2.7K40

    使用OpenCV测量图像中物体的大小

    原文链接:https://www.pyimagesearch.com/2016/03/28/measuring-size-of-objects-in-an-image-with-opencv/ 今天的文章是关于测量图像中物体大小和计算它们之间距离的系列文章的第二部分...测量图像中物体的大小类似于计算相机到物体的距离——在这两种情况下,我们都需要定义一个比率来测量每个计算对象的像素数。 我将其称为“像素/度量”比率,我将在下面中对其进行更正式的定义。...在任何一种情况下,我们的引用都应该以某种方式是唯一可识别的。 在这个例子中,我们将使用0.25美分作为我们的参考对象,在所有的例子中,确保它总是我们图像中最左边的对象。...使用这个比率,我们可以计算图像中物体的大小。 用计算机视觉测量物体的大小 现在我们了解了“像素/度量”比率,我们可以实现用于测量图像中对象大小的Python驱动程序脚本。...如果轮廓不够大,我们舍弃该区域,认为它是边缘检测过程中遗留下来的噪声(第4和5行)。 如果轮廓区域足够大,我们将计算图像的旋转包围框(第8-10行)。

    2.7K20

    OpenCV中基于Retinex的图像增强实现

    Retinex 理论认为物体的颜色是由物体对长波、中波和短波光线的反射能力决定的,而不是由反射光强度的绝对值决定的,即物体的色彩不受光照非均性的影响,具有一致性。...需要注意的是,最后一步量化的过程中,并不是将 Log[R(x,y)] 进行 Exp 化得到 R(x,y) 的结果,而是直接将 Log[R(x,y)] 的结果直接用如下公式进行量化: ?...Vec2b—表示每个Vec2b对象中,可以存储2个char(字符型)数据 Vec3b—表示每一个Vec3b对象中,可以存储3个char(字符型)数据,比如可以用这样的对象,去存储RGB图像中的...Vec4b—表示每一个Vec4b对象中,可以存储4个字符型数据,可以用这样的类对象去存储—4通道RGB+Alpha的图 SSR算法实现 void SingleScaleRetinex(...//高斯模糊,当size为零时将通过sigma自动进行计算 GaussianBlur(doubleImage, gaussianImage, Size(0, 0), sigma); //OpenCV

    2.4K21

    OpenCV 3.1.0中的图像放缩与旋转

    OpenCV在3.1.0版本中的图像放缩与旋转操作比起之前版本中更加的简洁方便,同时还提供多种插值方法可供选择。...首先来看图像放缩,通过OpenCV核心模块API函数resize即可实现图像的放大与缩小。...OpenCV3.1.0中实现图像旋转需要用到的两个API函数分别是 - getRotationMatrix2D - warpAffine 第一个函数是用来产生旋转矩阵M,第二个函数是根据旋转矩阵M实现图像指定角度的旋转...从上面旋转以后图像可以看到四个角被剪切掉了,无法显示,我们希望旋转之后图像还能够全部显示,在之前2.x的OpenCV版本中要实现这样的功能,需要很多的数学知识,而在3.1.0中只需要添加如下几行代码即可实现旋转之后的全图显示...可以看出基于OpenCV3.1.0实现图像旋转的时候同样会涉及到像素插值问题,可以选择的插值算法跟放缩时候一致。在OpenCV3.1.0中默认的插值算法是线性插值(INTER_LINEAR=1)。

    2.3K70

    OpenCV图像处理中“投影技术”的使用

    问题引出 本文区分”问题引出“、”概念抽象“、”算法实现“三个部分由表及里具体讲解OpenCV图像处理中“投影技术”的使用,并通过”答题卡识别“”OCR字符分割”“压板识别”“轮廓展开分析”四个的例子具体讲解算法使用...在这样采集到的图像中,大量存在黑色的定位区块: ? 如果进一步定位,可以得到这样的结果: ? 如果做成连续图像 ? ?...在这波峰波谷中,存在着的“量化”结果,对应了答题卡中的定位关系 概念抽象 在前面的分析里,我们已经基本建立起“投影”的概念。...在这样的OCR识别中,首先可以通过投影的方法,实现字符的分割。 2 . 压板识别 ? ? 在这样的项目中,同样可以通过投影的方法,获得各个压板的准确定位。 3、轮廓展开分析 ?...在类似树叶这样的测量中,可以通过“极坐标转换”,将树叶的这样的曲线转换成可以分析的投影,从而得到比如“树叶有多少个分叉”“有无缺陷”这样的定量信息。 君子藏器于身,待时而动

    1.3K20

    VC++中使用OpenCV对原图像中的四边形区域做透视变换

    VC++中使用OpenCV对原图像中的四边形区域做透视变换 最近闲着跟着油管博主murtazahassan,学习了一下LEARN OPENCV C++ in 4 HOURS | Including 3x...一般来说,透视变换可以表示为: 上面是透视变换的数学形式,说白了就是对图像中的某个区域做处理。 这里,(x’,y’)是变换点,而(x,y)是输入点。...一旦计算出变换矩阵,我们就将透视变换应用于整个输入图像以获得最终的变换图像。让我们看看如何使用 OpenCV 来做到这一点。...透视变换是计算图像学和线性代数中的一个常用概念。 在视角转换中,我们可以改变给定图像或视频的视角,以便更好地洞察所需信息。在透视变换中,我们需要提供图像上想要通过改变透视来收集信息的点。...} }; // 源图像中K卡片对应的四边形顶点的坐标。

    47710

    使用OpenCV测量图像中物体之间的距离

    / 前两篇文章: 使用Python和OpenCV顺时针排序坐标 使用OpenCV测量图像中物体的大小 已经完成了测量物体大小的任务,今天进行最后一部分:计算图片中物体之间的距离。...上篇我们讨论了如何使用参考对象来测量图像中对象的大小。 这个参考对象应该有两个重要的特征,包括: 我们知道这个物体的尺寸(以英寸、毫米等表示)。 它很容易在我们的图像中被识别出来(根据位置或外观)。...给定这样一个参考对象,我们可以使用它来计算图像中对象的大小。 今天,我们将结合本系列前两篇来计算对象之间的距离。 计算物体之间的距离与计算图像中物体的大小算法思路非常相似——都是从参考对象开始的。...当我们的图像被模糊后,我们应用Canny边缘检测器来检测图像中的边缘,然后进行膨胀+腐蚀来缩小边缘图中的缝隙(第7-9行)。...注意图像中的两个0.25美分完全平行,这意味着所有五个顶点之间的距离均为6.1英寸。

    5K40

    使用OpenCV测量图像中物体之间的距离

    / 前两篇文章: 使用Python和OpenCV顺时针排序坐标 使用OpenCV测量图像中物体的大小 已经完成了测量物体大小的任务,今天进行最后一部分:计算图片中物体之间的距离。...上篇我们讨论了如何使用参考对象来测量图像中对象的大小。 这个参考对象应该有两个重要的特征,包括: 我们知道这个物体的尺寸(以英寸、毫米等表示)。 它很容易在我们的图像中被识别出来(根据位置或外观)。...给定这样一个参考对象,我们可以使用它来计算图像中对象的大小。 今天,我们将结合本系列前两篇来计算对象之间的距离。 计算物体之间的距离与计算图像中物体的大小算法思路非常相似——都是从参考对象开始的。...当我们的图像被模糊后,我们应用Canny边缘检测器来检测图像中的边缘,然后进行膨胀+腐蚀来缩小边缘图中的缝隙(第7-9行)。...注意图像中的两个0.25美分完全平行,这意味着所有五个顶点之间的距离均为6.1英寸。

    2K30

    使用Python和OpenCV检测图像中的多个亮点

    今天的博客文章是我几年前做的一个关于寻找图像中最亮点的教程的后续。 我之前的教程假设在图像中只有一个亮点你想要检测... 但如果有多个亮点呢?...我们的目标是检测图像中的这五个灯泡,并对它们进行唯一的标记。 首先,打开一个新文件并将其命名为detect_bright_spot .py。...要开始检测图像中最亮的区域,我们首先需要从磁盘加载我们的图像,然后将其转换为灰度图并进行平滑滤波,以减少高频噪声: # load the image, convert it to grayscale,...阈值化后,我们得到如下图像: ? 注意图像的明亮区域现在都是白色的,而其余的图像被设置为黑色。...第7行我们开始循环遍历每个label中的正整数标签,如果标签为零,则表示我们正在检测背景并可以安全的忽略它(9,10行)。 否则,我们为当前区域构建一个掩码。

    4.1K10

    视觉进阶 | Numpy和OpenCV中的图像几何变换

    人工生成更多数据的一种方法是对输入数据随机应用仿射变换(增强)。 在本文中,我将向你介绍一些变换,以及如何在Numpy和OpenCV中执行这些变换。特别是,我将关注二维仿射变换。...根据参数的值,它将在矩阵乘法后扭曲任何图像。变换后的图像保留了原始图像中的平行直线(考虑剪切)。本质上,满足这两个条件的任何变换都是仿射的。 但是,有一些特殊形式的A,这是我们将要讨论的。...在Python和OpenCV中,2D矩阵的原点位于左上角,从x,y=(0,0)开始。...欧氏空间中的公共变换 在我们对图像进行变换实验之前,让我们看看如何在点坐标上进行变换。因为它们本质上与图像是网格中的二维坐标数组相同。...OpenCV中的变换 现在你已经对几何变换有了更好的理解,大多数开发人员和研究人员通常省去了编写所有这些变换的麻烦,而只需依赖优化的库来执行任务。在OpenCV中进行仿射变换非常简单。

    2.3K20

    常见的图像处理技术

    本期文章中,让我们一起来学习以下内容。 通过PIL和OpenCV来使用一些常见的图像处理技术,例如将RGB图像转换为灰度图像、旋转图像、对图像进行消噪、检测图像中的边缘以及裁剪图像中的感兴趣区域。...其次基本的图像处理技术同样有助于光学字符识别(OCR)。 图像处理技术通过识别关键特征或读取图像中的文本信息,来提高图像的可解释性,以便对图像中存在的对象进行分类或检测。 ?...当图像因噪声而变差并影响图像分析时,我们应该如何提高图像质量? 使用OpenCV对图像进行除噪 噪声并不是我们想得到的信号,就图像而言,它会使图像受到干扰而失真。...fastNlMeansDenoisingColored(image,None, h=5) cv2.imshow("Denoised Image", denoised_image) cv2.waitKey(0) 如何从图像中提取某些感兴趣的区域...裁剪图像 裁剪图像可让我们提取图像中的兴趣区域。 我们将裁剪泰姬陵的图像,从图像中删除其他细节,使图像仅保留泰姬陵。

    2.6K50

    OpenCV中图像显示你不知道的编程技巧

    OpenCV 中最常用的一个API函数 imshow 各种编程与应用技巧,是否有你以前一直想的,但是从来没有成功过的操作!...最简单的显示方式 01 很多人学习OpenCV,学会前面两个函数就是 Imread – 读图像 Imshow – 显示图像 代码看起来是这样 Mat src = imread("D:/images/test.png..."); imshow("input", src); 觉得好简单,真的好简单,但是他们遇到大图的时候,就会发现OpenCV无法完整显示!...如何在一个Mat对象中显示多张图 03 这个是很多人问我过的问题,其实很简单,创建一个空白的Mat,把两张图的内容放进去,然后显示新创建的Mat对象就可以把两张图显示在一个窗口里面。先看效果 ?...图像太大,无法完整显示怎么办 04 这个问题,其实不能怪imshow,主要原因出在opencv的默认窗口创建上面,在OpenCV中你可以直接调用imshow函数去显示图像,默认会创建一个同名的窗口,这个窗口的默认打开模式是

    1.5K40
    领券