前不久,雷军发布了一条爱心加美图的微博,拉开了小米和美图战略合作的大幕。同时,小米正式宣布两家品牌达成战略合作关系,美图公司将美图手机的品牌、影像技术和二级域名等独家授权给小米集团,合作期间长达30年。简单来说,就是美图手机将品牌以及相机算法等核心部分独家授权给了小米。
这家为47家美国最大的警察机构提供摄像设备及软件的公司,这一次竟然割爱,主动放弃了人脸识别这一在安防领域颇具潜力的技术。
由于毕业后一直在这个安防圈内,朋友有时咨询我应该买哪家的摄像头,说想装到家里看娃看门和陪伴老人。为了避免广告嫌疑,下面推荐几款,各有利弊大家自由选择。同时给出买消费类摄像头的注意事项。其实这种推荐和大家买手机一样,就是看下品牌,外观和功能,专业一点的人会看下CPU型号、内存、拍照功能。摄像头也类似,基本也需要关注一些基本功能和设备参数,同时家庭消费类摄像头有一个关注点比较重要就是隐私,最后给大家几条保护隐私小建议。
从2015年,马云在德国展示人脸支付技术以来,经过几年发展,人脸支付已经开始走向商用。近日,支付宝蜻蜓、微信青蛙以及人行牵头银联和各商业银行推进落地的刷脸支付系统陆续开始推向市场,笔者近期分别对相关产业各方采用的技术原理和基本概念进行了一些学习和研究,在此做一下记录和分享。
大家好,今天给大家分享一个ffmpeg加opencv的人脸采集并做出识别的实战项目!
视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——OpenCV版(二)》 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置,
视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——OpenCV版(二)》 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置
本文首发于政采云前端团队博客:基于 Web 端的人脸识别身份验证 https://www.zoo.team/article/web-face-recognition
思路: 1.导入库 2.加载图片 3.创建窗口 4.显示图片 5.暂停窗口 6.关闭窗口
最重要的原因——说出来像是Black Lives Matter的影响——种族问题。
有的浏览器设置了boss按键,手快的人还可以切换屏幕,不过总会显得不自然,而且经常搞的手忙脚乱的。
如果上班的时候想放松一下,或者直说想偷偷懒,看点和工作无关的网页,这时候万一老板突然出现在背后,会不会感到很难堪呢? 有的浏览器设置了boss按键,手快的人还可以切换屏幕,不过总会显得不自然,而且经常搞的手忙脚乱的。 一个日本程序员决定自己动手,编写一个一劳永逸的办法,我们来看看他是怎么实现的吧~ 思路很直接:用网络摄像头自动识别在工位通道走过的人脸,如果确认是老板的话,就用一张写满了代码的截图覆盖到整个屏幕上。 整个工程中应用了Keras深度学习框架来建立识别人脸的神经网络,和一个网络摄像头用来捕捉老板的
如果上班的时候想放松一下,或者直说想偷偷懒,看点和工作无关的网页,这时候万一老板突然出现在背后,会不会感到很难堪呢? 有的浏览器设置了boss按键,手快的人还可以切换屏幕,不过总会显得不自然,而且经常搞的手忙脚乱的。 一个日本程序员决定自己动手,编写一个一劳永逸的办法,我们来看看他是怎么实现的吧~ 思路很直接:用网络摄像头自动识别在工位通道走过的人脸,如果确认是老板的话,就用一张写满了代码的截图覆盖到整个屏幕上。 整个工程中应用了Keras深度学习框架来建立识别人脸的神经网络,和一个网络摄像头用来捕捉
如上图所示,硬件部分由TencentOS Tiny官方的RT1062开发板,OV5640摄像头,LCD显示屏等组成;其中: TencentOS Tiny官方的RT1062开发板,负责完成所有模块通信和人脸识别功能逻辑的实现。 LCD显示屏,负责显示摄像头采集的视频图像和识别结果框。 OV5640摄像头,负责完成人脸数据的采集。
笔者今年做了一个和人脸有关的android产品,主要是获取摄像头返回的预览数据流,判断该数据流是否包含了人脸,有人脸时显示摄像头预览框,无人脸时摄像头预览框隐藏,看上去这个功能并不复杂,其实在开发过程中,遇到的问题也不多,全部都处理了,在正式推出前,这个产品在公司内部也测试了几个月,也没发现bug,但最近实施人员,在客户公司做实施时,反馈回来各种问题,这些问题有部分是程序bug,也有一部分是和硬件有关,因为测试环境有限,笔者无法对各种型号,各个厂家的硬件进行测试,这篇文章主要是记录,摄像头给我们带来的一些坑,分享给涉及到人脸开发的朋友,让大家少走弯路。
由于我们的电脑有的有摄像头,有的没有摄像头,所以我们需要根据不同的场景来封装这个组件。先放个图吧,大家可以看得更加直观一些。
这次我把代码改造了下,使用上了RecordRTC这个库,把摄像头跟屏幕共享的视频合成在一起,并且摄像头的视频流做了个跟随人脸的模块。
随着现代科技的不断发展,现在的中国已经迈入5G时代,人工智能技术也正逐步广泛运用到了各行各业中,尤其人脸识别技术,已在各大行业中广泛使用。人脸识别门禁系统,可以防止陌生人尾随进入园区,大大降低了该风险。通过前端设备的识别,进行人脸与后台系统1对1的比对,比对成功方可进入。
本文是《人脸识别完整项目实战》系列博文第3部分:程序设计篇(Python版),第1节《Python实时视频采集程序设计》,本章内容系统介绍:基于Python+opencv如何实现实时视频采集。
今年 11 月,来自纽约大学的研究人员提出了一种可以生成「万能指纹」的神经网络模型 MasterPrints,攻击手机指纹解锁的成功率最高可达 78%。而最近,福布斯的记者们决定使用 3D 打印技术攻击手机的人脸识别功能,在一通测试之后,他们发现石膏「人脸」竟可以破解四种流行旗舰手机的 AI 人脸识别解锁功能,而 iPhone X 不为所动。
目前谈论起人脸识别,已经不是什么高深莫测的东西了。很多人都用过,切切实实的走进了人们的生活中,也确实给很多人带来了便利。从火车站的身份证人脸对比,小区的人脸识别门禁,超市的人脸识别储物柜,再到家庭的人脸识别智能锁,手机上的人脸识别解锁,人脸识别支付,各种嵌入式上面的人脸识别逐渐走进人们的生活。不管是否承认,我们确实逐渐进入了一个人工智能越来越繁荣的时代。嵌入式的ai也吸引了一大批爱好者的积极跟进。本文结合这几年的国内嵌入式上人脸识别的发展,谈一谈我的一些想法和对未来发展的一些预测。
机器之心原创 作者:王艺 藤子 这家蛰伏了两年的终端视觉公司,在首次发布会后两天的时间内,收获了一百余份订单,是怎样的新品让产业如此兴奋? 11 月 1 日,阅面科技在深圳举办了创立两年来的首次新品发布会,共发布了三款产品:跨模态人脸识别引擎 UniFace、基于 Uniface 的「繁星」AI 芯片视觉模块、以及基于「繁星」的智能客群分析摄像机——「阅客」。 在发布会后,阅面科技创始人兼 CEO 赵京雷对机器之能透露道,发布会后两天时间内,他们就收获了一百余份订单,此时的赵京雷内心难掩兴奋之情。 十多年前
需要将 haarcascade_frontalface_default.xml haarcascade_eye_tree_eyeglasses.xml 放入当前文件夹 或者你使用绝对路径也可以 这两个文件在\python\Lib\site-packages\cv2\data\ 里面 电脑没有摄像头的话可以使用手机当摄像头 在手机(安卓\IOS都可以)和电脑上面下载iVcam 并用数据线连接起来 下载地址:https://www.e2esoft.cn/ivcam/ 然后我发现我的台式电脑 使用上面那个软件 是0才可以运行 也就是选择笔记本摄像头才可以 如果你选的1 USB摄像头没有反应 不妨试试0 笔记本摄像头
昨天IFAA联盟发布“本地人脸识别安全解决方案”,用来实现金融级别现金支付的技术,“像iPhone X那样去人脸支付吧!安卓终于再一次追平了苹果”,并总结出“攻克了几乎是行业性的四大难题”:
作者介绍: 黄明,WWDC 2017大会的小时光茶社特派员 ,腾讯SNG增值产品部内容中心iOS组leader,主要负责手Q个性化业务、手Q WebView等项目。作为终端开发也喜欢学习些图像图形方向的知识,同好者可以技术交流。生活中,休闲比较喜欢看书,娱乐比较喜欢电竞。 今天内容依然是Machine Learning(机器学习),让我们大家持续兴奋。 1. NLP(Nature Language Processing) 还在为终端分词而苦恼吗?没有好的分词算法?分词词库太大?今天参加了我昨日提到的N
python:python3.6 摄像头:网络摄像头 Python库:openCV
随着现代安防监控科技的兴起和在各行各业的广泛应用,监控摄像头成为众所周知的产品,也为人类的工作生活提供了很大的便利。由于科技的发达,监控摄像头的升级换代也日益频繁。每年都有不计其数的摄像头被拆掉闲置,有的进了库房,有的被扔进了垃圾桶。其实很多被淘汰遗弃的监控摄像头性能完好,摄像清晰度很高,如果能再生利用,能很好地造福于民,但由于监控摄像头在出厂时为了突出监控录像的功能,在硬件软件服务上形式单一,这就使得监控摄像头一旦拆了下来,离开了原来的监控线路和主机服务器就毫无用处了,形成了极大的浪费。
人脸识别在LFW超越人的识别能力之后,就很少有重大的突破了,逐渐转向视频中人脸识别或人脸属性学习等方向。CV顶级会议的接受论文量也出现了逐渐平稳的趋势。 而行人重识别(Person re-identification)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。 给定一个监控行人图像,检索跨设备下的该行人图像。旨在弥补目前固定的摄像头的视觉局限,并可与行人检测/行人跟踪技术相结合 ,可广泛应用于智能视频监控、智能安保等领域。 行人重识
主要介绍通过https://github.com/opencv/opencv/releases 下载的 SDK的目录结构。
接触图像领域的应该对于opencv都不会感到陌生,这个应该算是功能十分强劲的一个算法库了,当然了,使用起来也是很方便的,之前使用Windows7的时候出现多该库难以安装成功的情况,现在这个问题就不存在了,需要安装包的话可以去我的资源中下载使用,使用pip安装方式十分地便捷。
到处都是装甲车辆、迷你坦克、警用直升机,穿着军绿色制服的小哥哥站姿挺拔,怀揣公文包的工作人员严肃的攀谈着……
AI人脸检测算法可以提取人脸和服装的特征,并将其分类为有用的类别,例如性别、年龄和服装颜色。通过搜索这些丰富的属性信息,可以帮助我们轻松找到目标人物,比如通过人脸以图搜图、人脸布控等等。
因为JetBot上用的是树莓派摄像头,所以我们也首选考虑使用树莓派摄像头,当然USB摄像头是亲测可用的。
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 关于人脸识别 本文是《JavaCV人脸识别三部曲》的第一篇,在《JavaCV的摄像头实战之八:人脸检测》一文中,实现了检测人脸并用方框标注出来,但仅框出人脸作用不大,最好是识别出此人的身份,这样就能做很多事情了,例如签到、告警等,这就是接下来咱们要挑战的人脸识别 人脸识别涉及到两个步骤:训练和识别,接下来简单说明解释一下 先看什么是训练,如下图,用两位天王
对于手机来说,近期炒得最火热的技术之一就是“全面屏”了。自从苹果带起了“刘海屏”的潮流,华为、小米、OPPO、vivo等好似都中了“刘海屏”的毒,纷纷开始采用“刘海屏”。然而,大众的需求总是越来越大,全面屏的呼声日渐高涨。
科技的迅速发展,无疑会反映在人们所熟悉的智能手机领域。在本届MWC上,众多厂商各显神通,带来的旗舰手机各具特色,持币以待的你是不是已经看花了眼?那么,就跟小编一起数数这届MWC的新潮流有哪些吧。 众厂
“基于 ARM Cortex-M3 处理器与 FPGA 的实时人脸检测 SOC”的概述请看《基于 ARM Cortex-M3 处理器与 FPGA 的实时人脸检测 SOC(查看公众号上篇内容)》,本篇文章是对“基于 ARM Cortex-M3 处理器与 FPGA 的实时人脸检测 SOC”中涉及到的技术细节的介绍,希望您能有所收获。
智能门锁在经过2018年的爆发直至近几年来的持续增长,目前市场上各类的产品基本都涵盖了密码、刷卡、指纹这几项关键的开门方式,人脸识别技术作为一种新的引用技术,成为众多厂家为追求产品差异化而形成的一种趋势。
采集人脸图片的方法多种多样,可以直接从网上下载数据集,可以从视频中提取图片,还可以从摄像头实时的采集图片。
随着疫情的出现,线上会议的应用越来越广泛,相关的技术也越来越成熟,但当前的线上会议系统大都基于电脑和手机,便于个人使用,但由于其摄像头拍摄方向固定,当会议一端有多人参与时,就需要每人都单独开一个窗口才能有较好的效果,较为不便。基于此,我们设计了一个新的会议系统,以更好地适应多人会议的需求。
金磊 发自 凹非寺 量子位 报道 | 公众号 QbitAI Windows Hello,相信大家都不陌生了。 毕竟一度被称为“最简单的登录方式”——刷个脸,电脑就可以立马解锁。 但就在最近,它却被曝出了一个大bug: 只需外接一个USB摄像头,2帧图像。 然后“啪的一下”,就进来了…… Windows Hello最近不太好 人脸解锁,近几年可以说是越发的普及。 像苹果的iPhone和iPad,就可以利用自带的前置摄像头来解锁。 但Windows电脑的人脸识别解锁,不仅可以用自带摄像头,也可以与第三方网
智能分析摄像机是基于深度学习处理平台的智能行为分析产品,支持多目标人脸检测、物体分析识别、行人及动作分析、交通工具检测及车辆信息分析等功能。集中部署情况下,通过多设备联动实现区域范围内无死角监控分析。
在漫长的无心工作的“年底”里,你们大概需要动用深度学习技能来假装好好工作:当老板快要走到身后,让电脑自动隐藏“工作不宜”的窗口。 付出这么多努力就为了工作时开个小差? 好像是的…… AHOGRAMMER发布了这样一个名为“老板传感器”的制作教程: 定义任务 这个程序的任务就是当老板接近的时候,自动隐藏“工作不宜”窗口。 老板和我的座位距离约6-7米,如果我在看“工作不宜”的东西,当老板离开座位,有4-5秒的时间切换界面。 策略 用深度学习训练一个模型,让电脑能认出老板的脸。 在桌上安装一个摄像头
项目地址 https://github.com/guoyaohua/SmileyFace 开发环境 Visual Studio 2010 MFC + OpenCV 功能描述 静态图像人脸检测 视频人脸
(1)安装机器学习必要库,如NumPy、Pandas、Scikit-learn等;
城市利用交通摄像头作为全市范围内的传感器来优化交通流量和管理交通事故潜力巨大。但现有技术缺乏大范围跟踪车辆的能力,这些车辆跨越多个摄像机,分布在不同的十字路口,天气条件也各不相同。
上一文,我们讲到的是使用JavaCV拉取笔记本摄像头画面,这次,我们基于上一次的基础,加工人脸识别功能。
OpenCV4.1已经发布将近一年了,其人脸识别速度和性能有了一定的提高,这里我们使用opencv来做一个实时活体面部识别的demo
领取专属 10元无门槛券
手把手带您无忧上云