数据仓库之ODS层搭建 我们本项目中对数据仓库每层的搭建主要分为两部分,第一部分是确定都有哪些表,第二部分是确定数据装载的方式。...我们在进行ODS层搭建时,需要明确以下几点: 1)ODS层的表结构设计依托于从业务系统同步过来的数据结构。 2)ODS层要保存全部历史数据,故其压缩格式应选择压缩比较高的,此处选择gzip。
1.Hive简介 hive是基于Hadoop的一个数据仓库的机制。hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。...在安装Hive之前,需要先确保Hadoop与MySQL是正常启动的,Hadoop与MySQL的搭建可以参[环境搭建的系列文章。
数据仓库是伴随着企业信息化发展起来的,在企业信息化的过程中,随着信息化工具的升级和新工具的应用,数据量变的越来越大,数据格式越来越多,决策要求越来越苛刻,数据仓库技术也在不停的发展。...在进行数据仓库搭建介绍之前,先来简单分析一下数据项目和应用项目的区别。 前期调研阶段 应用项目聚焦业务本身,需要梳理具体的业务流程;数据项目聚焦于数据流向,需要梳理数据全景图。...通常搭建一个健康的数据仓库项目,有业务确认、数据收集、数据建模、数据处理、数据可视化/分析五部分。 ?...---- 一、业务确认 在数据仓库领域,通常采用的建模方法是维度建模,按照事实表(fact数据),维度表(dim数据)来构建数据仓库。...数据分层 通常数据仓库会分为三层:ODS层(staging层)、DW层(数据仓库层)、DM层(数据集市层)。
业务板块定义原则:业务逻辑层面进行抽象、物理组织架构层面进行细分,可根据实际业务情况进行层级分拆细化,层级分级建议进行最多进行三级分拆,一级细分可公司层面统一规...
数据仓库 数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。...数据仓库分层 按照数据流入流出的过程,数据仓库架构可分为三层——源数据(ODS)、数据仓库(DW)、数据应用(APP)。 Hive Hive是一个构建在 Hadoop上的数据仓库框架。...Hive环境搭建 在Hive环境搭建无需配置集群,Hive的安装其实有两部分组成,一个是Server端、一个是客户端,所谓服务端其实就是Hive管理Meta的那个Hive,服务端可以装在任何节点上,可以是...在 Hive环境搭建,需要搭建Mysql,这里选择节点node02进行Mysql环境搭建。...在输入hive,即可进入Hive命令行,说明Hive搭建成功。 - END -
(1) 嵌入模式 基于系统本身的数据库derby数据库进行存储元数据,该模式是默认安装方式,配置简单 缺点: 一次只能连接一个客户端,仅适合在测试环境内使用
一、Hive基础简介 1、基础描述 Hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,是一个可以对Hadoop中的大规模存储的数据进行查询和分析存储的组件,Hive数据仓库工具能将结构化的数据文件映射为一张数据库表...hive十分适合对数据仓库进行统计分析。 2、组成与架构 ? 用户接口:ClientCLI、JDBC访问Hive、WEBUI浏览器访问Hive。
二、搭建集群环境 1、解压文件 tar -zxvf hbase-1.3.1-bin.tar.gz 2、配置环境变量 vim /etc/profile export HBASE_HOME=/opt/hbase
建立OLAP应用之前,我们要想办法把各个独立系统的数据抽取出来,经过一定的转换和过滤,存放到一个集中的地方,成为数据仓库。...对于OLAP应用,也要根据客户需求,我们对数据仓库中这些物理存在的表要进行逻辑建模,以某些重要的事实数据(如销售数据)为核心,建立与其他物理表(维度表)之间的业务关系。...同样,有了表达逻辑关系的模型Cube,数据仓库中也导入了业务数据,我们还要告诉执行引擎如何取得我们真正所要的数据。...以上是建立OLAP应用的几个重要环节和相关技术,最后总结一下:用户需求——数据建模——数据仓库 用户需求决定了如何设计模型和数据仓库,数据模型又是描述数据仓库的逻辑关系,而数据模型和数据仓库的某些技术限制也可能影响用户需求的实现...而MDX查询,又是这三者之间的粘合剂,它表达了用户的需求,经过OLAP引擎的解析,根据数据模型的描述,从数据仓库找到所需要的数据。
如何使用OSM模型和AARRR模型搭建指标体系?如何统一流程、规范化、工具化管理指标体系?本文会对建设的方法论结合滴滴数据指标体系建设实践进行解答分析。 什么是指标体系 1....为什么搭建指标体系 1. 衡量业务发展质量 指标体系可以反映业务客观事实,看清业务发展现状,通过指标对业务质量进行衡量,把控业务发展情况,针对发现的业务问题聚焦解决,促进业务有序增长 2....统一指标消费口径 企业内统一关键指标业务口径及计算口径,统一企业业务目标,实现自上而下目标驱动 如何搭建指标体系 指标体系建设的常用方法是通过场景化进行指标体系的搭建,以用户的视角场景化思考,自上而下业务驱动指标体系建设...,所以要在特定场景下做好指标体系建设,需要先选好指标,然后用科学的方法搭建指标体系。...用分析模型搭建指标体系 在《精益数据分析》一书中给出了两套比较常用的指标体系建设方法论,其中一个就是比较有名的海盗指标法,也就是我们经常听到的AARRR海盗模型。
~这就是关于数据仓库最贴切的定义了。事实上数据仓库不应让传统关系数据库来实现,因为关系数据库最少也要求满足第1范式,而数据仓库里的关系表可以不满足第1范式。...有了这些数据快照以后,用户便可将其汇总,生成各历史阶段的数据分析报告; 数据仓库组件 数据仓库的核心组件有四个:各源数据库,ETL,数据仓库,前端应用。如下图所示: ? 1....前端应用 和操作型数据库一样,数据仓库通常提供具有直接访问数据仓库功能的前端应用,这些应用也被称为BI(商务智能)应用; 数据集市(data mart) 数据集市可以理解为是一种"小型数据仓库",它只包含单个主题...当用户或者应用程序不需要/不必要不允许用到整个数据仓库的数据时,非独立数据集市就可以简单为用户提供一个数据仓库的"子集"。...数据仓库开发流程 在数据库系列的第五篇 中,曾详细分析了数据库系统的开发流程。数据仓库的开发流程和数据库的比较相似,因此本文仅就其中区别进行分析。 下图为数据仓库的开发流程: ?
前面我们分析了职场基本功、数据指标体系,少量的数据仓库内容,今天我们来就工作中经常遇到的数据维护问题,聊一下流量日志的维度表搭建思考。...历史导读: 小进阶:数据指标体系和数据治理的管理 小诀窍:不妨尝试从交付质量上打败对手 小尝试:基于指标体系的数据仓库搭建和数据可视化 以下,Enjoy: 0x01 问题场景描述 0x01 我遇见的问题场景描述...前面文章中我们提到过《基于指标体系的数据仓库搭建和数据可视化》,强调了指标体系对数据数据仓库搭建和数据可视化的必要性和重要性。...很多人会将其理解为埋点元数据管理,再次强调几点格外的注意事项: 管理数据基本强调的是依据标准规范SOP执行动作,数据埋点在此基础上还有多思考怎么搭建内容知识库,首先的根据是让内容从0-1,然后才是从1...这个过程“运营”的特点是,避免让少数人参与内容的生成,而是鼓励有能力建设内容的人在日常工作中能够不断的贡献知识点,这方面参照“维基百科”词条的搭建。
在后面的数据仓库实践中会用到Sqoop、Hive、Oozie、Impala、Hue等工具,出于简单部署的原则,这里选择CDH 5.7.0,并启用相关服务。
Tech 导读 本方案以某金融企业大数据平台建设方案为例,面对企业内部的数据现状提出合理化建议,基于商业版Hadoop数据平台搭建数据仓库系统,实现数据资产的充分利用,结合当时现状推荐国产自主研发商业版...为了整合公司各系统数据,搭建一个数据精确、性能高效、方便分析的数据仓库系统。...图1 建设背景 1.2 目标 通过搭建基于商业版Hadoop大数据平台的数据仓库系统,实现对我司数据资产的充分利用。...数据源层 源数据层是指数据仓库系统的数据来源,为数据仓库提供数据。数据仓库的数据主要来自业务系统、三方系统以及部分管理系统。...从设计稿出发,提升页面搭建效率,亟需解决的核心问题有: 3.1 实施关键点 一个成功的数据类项目需要具备以下4个关键要素: 1. 专业的实施与服务团队。 2. 先进成熟的实施方法。 3.
(2)支持行级更新 在一个典型的星型模式数据仓库中,维度表随时间的变化很缓慢。...RDS存储原始数据,作为源数据到数据仓库的过渡,在CDH2上的Hive中建RDS库表。TDS即为转化后的多维数据仓库,在CDH2上的Hive中建TDS库表。...d)关于日期维度数据装载 日期维度在数据仓库中是一个特殊角色。...日期维度包含时间概念,而时间是最重要的,因为数据仓库的主要功能之一就是存储历史数据,所以每个数据仓库里的数据都有一个时间特征。...使用这个方法,在数据仓库生命周期中,只需要预装载日期维度一次。预装载的缺点是: 提早消耗磁盘空间 可能不需要所有的日期(稀疏使用)
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/...
Python量化数据仓库搭建系列3:数据落库代码封装 本系列教程为量化开发者,提供本地量化金融数据仓库的搭建教程与全套源代码。...数据落库示例 以股票列表(stock_list)为例,讲解建表、落库、查询等操作;全套代码见本文第三章; 1、准备工作 (1)在MySQL数据库中,创建数据库udata,创建过程见第一讲《Python量化数据仓库搭建系列...下一节《Python量化数据仓库搭建系列4:股票数据落库》 第3节-数据落库代码封装-源代码文件.rar
数据仓库是现代数据堆栈的基础,所以当我们看到 Convoy 数据负责人 Chad Sanderson 在 LinkedIn 上宣称“数据仓库坏了”时,它引起了我们的注意。...我会让您自己决定“不可变数据仓库”(或主动与被动 ETL)是否适合您的数据团队。...不可变数据仓库如何结合规模和可用性 乍得桑德森的观点 现代数据堆栈有许多排列,但数据仓库是一个基础组件。...另一种方法:引入不可变数据仓库 不可变数据仓库概念(也称为活动 ETL)认为,仓库应该是通过数据来表示现实世界,而不是乱七八糟的随机查询、损坏的管道和重复信息。...不可变数据仓库也面临挑战。以下是一些可能的解决方案。 我并不认为不可变数据仓库是灵丹妙药。与任何方法一样,它也有其优点和缺点,而且肯定不是每个组织都适用。
查看、编辑数据仓库的基本模型(即事实表与维度表之间的关系)。针对某一系统需求,从无到有设计一 个数据仓库基本架构,要求能够按不同维度进行多维数据查询分析。...六、实验总结体会 数据仓库的设计过程需要充分理解业务需求和数据特点,结合具体业务场景进行建模。...在本实验中,针对电商销售情况分析的需求,采用了星型模型来设计数据仓库的维度表和事实表,这样的设计能够简洁清晰地反映业务事件的关联关系。 在数据仓库的设计中,维度表的设计尤为重要。...通过定义数据源、数据源视图、维表、多维数据集等,完成了数据仓库的搭建和多维分析项目的部署。 ...总的来说,本次实验使我深入了解了数据仓库的建立方法和多维分析的基本过程,对于应用 SQL Server 进行数据仓库建模和多维分析项目开发有了更深入的理解和实践经验。
海盗指标法(AARRR海盗模型) 它反映了增长是系统性地贯穿于用户生命周期各个阶段的:用户拉新(Acquisition)、用户激活(Activation)、用...
领取专属 10元无门槛券
手把手带您无忧上云