首页
学习
活动
专区
圈层
工具
发布

数据湖(一):数据湖概念

数据湖概念一、什么是数据湖数据湖是一个集中式的存储库,允许你以任意规模存储多个来源、所有结构化和非结构化数据,可以按照原样存储数据,无需对数据进行结构化处理,并运行不同类型的分析对数据进行加工,例如:大数据处理...数据湖技术可以很好的实现存储层面上的“批流一体”,这就是为什么大数据中需要数据湖的原因。...三、数据湖与数据仓库的区别数据仓库与数据湖主要的区别在于如下两点:存储数据类型数据仓库是存储数据,进行建模,存储的是结构化数据;数据湖以其本源格式保存大量原始数据,包括结构化的、半结构化的和非结构化的数据...而对于数据湖,您只需加载原始数据,然后,当您准备使用数据时,就给它一个定义,这叫做读时模式(Schema-On-Read)。这是两种截然不同的数据处理方法。...因为数据湖是在数据使用时再定义模型结构,因此提高了数据模型定义的灵活性,可满足更多不同上层业务的高效率分析诉求。图片图片

1.8K94
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    从数据湖到元数据湖——TBDS新一代元数据湖管理

    所以在Data+AI 时代,面对AI非结构化数据和大数据的融合,以及更复杂跨源数据治理能力的诉求,TBDS开发了第三阶段的全新一代统一元数据湖系统。...02、新一代元数据湖管理方案 TBDS全新元数据湖系统按照分层主要有统一接入服务层、统一Lakehouse治理层、统一元数据权限层、统一Catalog模型连接层。...我们引入了Gravitino并且基于它在数据治理、数据权限等能力上做了大量的TBDS已有能力的合入优化,形成一个闭环、完整的系统。...统一接入服务对外提供开放标准的API接口给用户或引擎对元数据湖的各种操作,提供JDBC、REST API和Thrift协议三种方式访问元数据。...特别在大数据结构化数据更好实现了湖仓元数据的统一和联动。 03、统一元数据权限 在Hadoop体系的优化 我们通过统一元数据系统的统一权限插件完成了不同数据源权限的管理。

    83810

    基于Apache Hudi 的CDC数据入湖

    CDC数据入湖方法 基于CDC数据的入湖,这个架构非常简单。...下图是典型CDC入湖的链路。上面的链路是大部分公司采取的链路,前面CDC的数据先通过CDC工具导入Kafka或者Pulsar,再通过Flink或者是Spark流式消费写到Hudi里。...这是阿里云数据库OLAP团队的CDC入湖链路,因为我们我们做Spark的团队,所以我们采用的Spark Streaming链路入湖。...整个入湖链路也分为两个部分:首先有一个全量同步作业,会通过Spark做一次全量数据拉取,这里如果有从库可以直连从库做一次全量同步,避免对主库的影响,然后写到Hudi。...上游是入湖的变化事件流,对上可以支持各种各样的数据引擎,比如presto、Spark以及云上产品;另外可以利用Hudi的增量拉取能力借助Spark、Hive、Flink构建派生表。

    1.3K10

    Flink CDC + Hudi 海量数据入湖在顺丰的实践

    image.png 上图为 Flink + Canal 的实时数据入湖架构。...Upsert 或 Merge 写入才能剔除重复的数据,确保数据的最终一致性; 需要两套计算引擎,再加上消息队列 Kafka 才能将数据写入到数据湖 Hudi 中,过程涉及组件多、链路长,且消耗资源大...上述整个流程中存在两个问题:首先,数据多取,存在数据重复,上图中红色标识即存在重复的数据;其次,全量和增量在两个不同的线程中,也有可能是在两个不同的 JVM 中,因此先发往下游的数据可能是全量数据,也有可能是增量数据...Q3 顺丰这些特性会在 CDC 开源版本中实现吗? 目前我们的方案还存在一些局限性,比如必须用 MySQL 的 GTID,需要下游有数据冲突处理的算子,因此较难实现在社区中开源。...Q4 Flink CDC 2.0 新增表支持全量 + 增量吗? 是的。 Q5 GTID 去重算子会不会成为性能瓶颈? 经过实践,不存在性能瓶颈,它只是做了一些数据的判断和过滤。

    1.3K20

    Dinky 构建 Flink CDC 整库入仓入湖

    》,带了新的数据入仓入湖架构。...如何简化实时数据入湖入仓》总结为以下四点: 1.全增量切换问题 该CDC入湖架构利用了 Hudi 自身的更新能力,可以通过人工介入指定一个准确的增量启动位点实现全增量的切换,但会有丢失数据的风险。...3.Schema 变更导致入湖链路难以维护 表结构的变更是经常出现的事情,但它会使已存在的 FlinkCDC 任务丢失数据,甚至导致入湖链路挂掉。...4.整库入湖 整库入湖是一个炙手可热的话题了,目前通过 FlinkCDC 进行会存在诸多问题,如需要定义大量的 DDL 和编写大量的 INSERT INTO,更为严重的是会占用大量的数据库连接,对 Mysql...此外 Dinky 还支持了整库同步各种数据源的 sink,使用户可以完成入湖入仓的各种需求,欢迎验证。

    4.7K20

    数据湖

    架构比略差 下面我们看下网上对于主流数据湖技术的对比 ?...从上图中我们可以看到hudi和iceberg的功能较齐全,下面我们将从如下几方面来 1.元数据打通 2.flink读写数据湖 3.增量更新 4.对事务的支持 5.对于写入hdfs小文件合并的支持 6.湖中的数据和仓中的数据的联通测试...7.高效的回缩能力 8.支持Schema变更 9.支持批流读写 9.支持批流读写 说完了技术体现,下面我们在简单说一下数据湖和数仓的理论定义 数据湖 其实数据湖就是一个集中存储数据库,用于存储所有结构化和非结构化数据...数据湖可用其原生格式存储任何类型的数据,这是没有大小限制。数据湖的开发主要是为了处理大数据量,擅长处理非结构化数据。 我们通常会将所有数据移动到数据湖中不进行转换。...数据湖中的每个数据元素都会分配一个唯一的标识符,并对其进行标记,以后可通过查询找到该元素。这样做技术能够方便我们更好的储存数据。 数据仓库 数据仓库是位于多个数据库上的大容量存储库。

    78130

    基于Apache Hudi + Flink的亿级数据入湖实践

    随着实时平台的稳定及推广开放,各种使用人员有了更广发的需求: •对实时开发来说,需要将实时sql数据落地做一些etl调试,数据取样等过程检查;•数据分析、业务等希望能结合数仓已有数据体系,对实时数据进行分析和洞察...,比如用户行为实时埋点数据结合数仓已有一些模型进行分析,而不是仅仅看一些高度聚合化的报表;•业务希望将实时数据作为业务过程的一环进行业务驱动,实现业务闭环;•针对部分需求,需要将实时数据落地后,结合其他数仓数据...总的来说,实时平台输出高度聚合后的数据给用户,已经满足不了需求,用户渴求更细致,更原始,更自主,更多可能的数据 而这需要平台能将实时数据落地至离线数仓体系中,因此,基于这些需求演进,实时平台开始了实时数据落地的探索实践...•ETL逻辑能够嵌入落数据任务中•开发入口统一 我们当时做了通用的落数据通道,通道由Spark任务Jar包和Shell脚本组成,数仓开发入口为统一调度平台,将落数据的需求转化为对应的Shell参数,启动脚本后完成数据的落地...当时Flink+Hudi社区还没有实现,我们参考Flink+ORC的落数据的过程,做了实时数据落地的实现,主要是做了落数据Schema的参数化定义,使数据开发同事能shell化实现数据落地。 4.

    99731

    【数据湖】塑造湖:数据湖框架

    大数据和数据湖的风险和挑战 大数据带来的挑战如下: 容量——庞大的数据量是否变得难以管理? 多样性——结构化表格?半结构化 JSON?完全非结构化的文本转储?...准确性——当数据量不同、来源和结构不同以及它们到达湖的速度不同时,我们如何保持准确性和准确性? 同时管理所有四个是挑战的开始。 很容易将数据湖视为任何事物的倾倒场。...框架 我们把湖分成不同的部分。关键是湖中包含各种不同的数据——一些已经过清理并可供业务用户使用,一些是无法辨认的原始数据,需要在使用之前进行仔细分析。...文件夹结构本身可以任意详细,我们自己遵循一个特定的结构: 原始数据区域是进入湖的任何文件的着陆点,每个数据源都有子文件夹。...视频号 【超级架构师】1分钟快速了解架构相关的基本概念,模型,方法,经验。每天1分钟,架构心中熟。 知识星球 向大咖提问,近距离接触,或者获得私密资料分享。

    81920

    腾讯主导 Apache 开源项目: InLong(应龙)数据入湖原理分析

    WeData 数据集成完全基于 Apache InLong 构建,本文阐述的 InLong 数据入湖能力可以在 WeData 直接使用。...关于 Apache Iceberg Apache Iceberg 是一种数据湖管理库,其设计简单、易用,并具备强大的查询和分析能力。...它解决了数据湖的成本效益和使用复杂性的问题,同时还提供了数据管理与访问的解耦、数据的可见性和一致性保证、快照和时间旅行查询等特性。...在各种数据湖的场景中,Iceberg 都能够发挥重要的作用,提高数据湖的可用性和可靠性,同时也为用户带来了更好的数据管理和查询体验。...Sort on Flink 入 Iceberg 上图为 Sort on Flink 主要流程,入 Iceberg 任务由三个算子一个分区选择器组成,Source 算子从源端拉取数据, Key Selector

    88910

    漫谈“数据湖”

    而这一切的数据基础,正是数据湖所能提供的。 二、数据湖特点 数据湖本身,具备以下几个特点: 1)原始数据 海量原始数据集中存储,无需加工。...数据湖可以包括来自关系数据库(行和列)的结构化数据,半结构化数据(CSV,日志, XML, JSON),非结构化数据(电子邮件,文档, PDF)和二进制数据(图像,音频,视频)。...3)延迟绑定 数据湖提供灵活的,面向任务的数据编订,不需要提前定义数据模型。 三、数据湖优缺点 任何事物都有两面性,数据湖有优点也同样存在些缺点。 优点包括: 数据湖中的数据最接近原生的。...这也主要是因为数据过于原始带来的问题。  四、数据湖与关联概念 4.1 数据湖 vs 数据仓库 数据湖建设思路从本质上颠覆了传统数据仓库建设方法论。...4.4 数据湖 vs 人工智能 近些年,人工智能技术再一次飞速发展,训练和推理等需要同时处理超大的,甚至是多个数据集,这些数据集通常是视频、图片、文本等非结构化数据,来源于多个行业、组织、项目,对这些数据的采集

    1.8K30

    基于Flink CDC打通数据实时入湖

    照片拍摄于2014年夏,北京王府井附近 大家好,我是一哥,今天分享一篇数据实时入湖的干货文章。...数据入湖分为append和upsert两种方式。...3,数据入湖任务运维 在实际使用过程中,默认配置下是不能够长期稳定的运行的,一个实时数据导入iceberg表的任务,需要通过至少下述四点进行维护,才能使Iceberg表的入湖和查询性能保持稳定。...并增加小文件监控、定时任务压缩小文件、清理过期数据等功能。 2,准实时数仓探索 本文对数据实时入湖从原理和实战做了比较多的阐述,在完成实时数据入湖SQL化的功能以后,入湖后的数据有哪些场景的使用呢?...下一个目标当然是入湖的数据分析实时化。比较多的讨论是关于实时数据湖的探索,结合所在企业数据特点探索适合落地的实时数据分析场景成为当务之急。

    1.8K20

    【数据湖仓】数据湖和仓库:范式简介

    博客系列 数据湖和仓库第 1 部分:范式简介 数据湖和仓库第 2 部分:Databricks 和雪花 数据湖和仓库第 3 部分:Azure Synapse 观点 两种范式:数据湖与数据仓库 基于一些主要组件的选择...,云分析解决方案可以分为两类:数据湖和数据仓库。...数据湖:去中心化带来的自由 数据湖范式的核心原则是责任分散。借助大量工具,任何人都可以在访问管理的范围内使用任何数据层中的数据:青铜、白银和黄金。...集中式数据湖元数据管理工具越来越多,但使用它们取决于开发过程。技术很少强制这样做。 结论:数据湖和数据仓库 在这篇文章中,我们讨论了数据仓库和基于数据湖的解决方案的基本方法或范式的差异。...视频号 【超级架构师】1分钟快速了解架构相关的基本概念,模型,方法,经验。每天1分钟,架构心中熟。 知识星球 向大咖提问,近距离接触,或者获得私密资料分享。

    76310

    数据湖真的能取代数据仓库吗?【SNP SAP数据转型 】

    那对于数据湖应该是什么样子,先来看数据湖的作者AWS来说明数据湖是什么东西,比如下图: 不懂数据的人也许会觉得数据湖很厉害,而懂数据的人也许会觉得仅是一堆数据仓库技术的堆砌包装而已,你看上面那张框架图...凭什么数据湖被炒作成了一个新概念? 而对于数据湖的定义则是: 数据湖是一个集中式存储库,允许您以任意规模存储所有结构化和非结构化数据。...从介绍来看好像数据仓库和数据湖的最主要的区别就是对结构化的数据和非结构化数据的存储,但是真的仅仅是这样吗?...湖和仓的数据/元数据无缝打通,互相补充,数据仓库的模型反哺到数据湖(成为原始数据一部分),湖的结构化应用知识沉淀到数据仓库。...,形成一套数据服务环,更好地分析、整合数据,让数据仓库和数据湖中的数据可以自由流动,用户可以更便捷地调取其中的数据,让数据“入湖”、“出湖”更为便捷。

    34440

    基于TIS构建Apache Hudi千表入湖方案

    拥抱数据湖 随着大数据时代的到来,数据量动辄PB级,因此亟需一种低成本、高稳定性的实时数仓解决方案来支持海量数据的OLAP查询需求,Apache Hudi[1]应运而生。...Hudi数据湖方案比传统的Hive数仓的优势是加入了数据实时同步功能, 可以通过最新的Flink流计算引擎来以最小的成实现数据实时同步。...TIS采用两种方式实现数据入湖: 1....DeltaStreamer: 该方法实现批量数据导入,通过DataX将数据表中数据以avro格式导入到HDFS中,之后启动DeltaStreamer通过Spark RDD消费HDFS中的原始数据进行数据入湖...Hadoop 2.7.3 Apache Flink tis-1.13.1(基于Flink 1.13.1 定制,解决不同组件Source,Sink之间可能存在的三方依赖包冲突) 创建MySQL到Hudi千表入湖通道

    1.8K10

    COS 数据湖最佳实践:基于 Serverless 架构的入湖方案

    这篇文章就数据湖的入湖管道为大家详细解答关于 COS 数据湖结合 Serverless 架构的入湖方案。...传统数据湖架构分入湖与出湖两部分,在上图链路中以数据存储为轴心,数据获取与数据处理其实是入湖部分,数据分析和数据投递其实算是数据出湖部分。...总结来看,整体数据湖链路中定制化程度最高,使用成本及代价最大的其实是数据入湖部分(指数据获取和入湖前的数据处理)。这块内容往往也是实现的数据湖架构比较核心的数据连接。...03 COS + Serverless 数据湖入湖解决方案 COS + Serverless 架构湖整体能力点及方案如下图所示,相关解决方案覆盖数据入湖,数据出湖,数据处理三大能力点,通过 Serverless...化封装为数据入湖,数据出湖提供更多能力拓展。

    2K40

    基于Apache Hudi和Debezium构建CDC入湖管道

    从 Hudi v0.10.0 开始,我们很高兴地宣布推出适用于 Deltastreamer[1] 的 Debezium 源[2],它提供从 Postgres 和 MySQL 数据库到数据湖的变更捕获数据...背景 当想要对来自事务数据库(如 Postgres 或 MySQL)的数据执行分析时,通常需要通过称为更改数据捕获[4] CDC的过程将此数据引入数据仓库或数据湖等 OLAP 系统。...现在 Apache Hudi[6] 提供了 Debezium 源连接器,CDC 引入数据湖比以往任何时候都更容易,因为它具有一些独特的差异化功能[7]。...Hudi 独特地提供了 Merge-On-Read[8] 写入器,与使用 Spark 或 Flink 的典型数据湖写入器相比,该写入器可以显着降低摄取延迟[9]。...现在可以将数据库数据提取到数据湖中,以提供一种经济高效的方式来存储和分析数据库数据。请关注此 JIRA[20] 以了解有关此新功能的更多信息。

    2.5K20

    基于Apache Hudi 的CDC数据入湖

    02 CDC数据入湖方法 基于CDC数据的入湖,这个架构非常简单。...下图是典型CDC入湖的链路。上面的链路是大部分公司采取的链路,前面CDC的数据先通过CDC工具导入Kafka或者Pulsar,再通过Flink或者是Spark流式消费写到Hudi里。...这是阿里云数据库OLAP团队的CDC入湖链路,因为我们我们做Spark的团队,所以我们采用的Spark Streaming链路入湖。...整个入湖链路也分为两个部分:首先有一个全量同步作业,会通过Spark做一次全量数据拉取,这里如果有从库可以直连从库做一次全量同步,避免对主库的影响,然后写到Hudi。...上游是入湖的变化事件流,对上可以支持各种各样的数据引擎,比如presto、Spark以及云上产品;另外可以利用Hudi的增量拉取能力借助Spark、Hive、Flink构建派生表。

    1.9K30

    数据湖是下一代数据仓库吗?

    一、数据湖的定义 数据湖(Data Lake)是一个以原始格式存储数据的存储库或系统。它按原样存储数据,而无需事先对数据进行结构化处理。...一个数据湖可以存储结构化数据(如关系型数据库中的表),半结构化数据(如CSV、日志、XML、JSON),非结构化数据(如电子邮件、文档、PDF)和二进制数据(如图形、音频、视频),并运行不同类型的分析从控制面板和可视化到大数据处理...,数据湖应该支持异构和多样的存储,如HDFS、HBase、Hive等,存储原始格式的数据; 3.3数据搜索 数据湖中拥有海量的数据,对于用户来说,明确知道数据湖中数据的位置,快速的查找到数据,是一个非常重要的功能...四、数据湖的生命周期 五、数据湖与数据仓库的区别 数据仓库是一个优化的数据库,用于分析来自事务系统和业务线应用程序的关系数据。...七、数据湖的挑战 数据湖架构的主要挑战是存储原始数据而不监督内容。对于使数据可用的数据湖,它需要有定义的机制来编目和保护数据。没有这些元素,就无法找到或信任数据,从而导致“数据沼泽”的出现。

    40430
    领券