首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    爬虫数据存储技术比较:数据库 vs. 文件 vs. NoSQL

    事件描述: 在进行网络爬虫开发时,数据存储是一个关键的环节。不同的数据存储技术有着各自的特点和适用场景。本文将比较常用的数据库、文件和NoSQL三种数据存储技术,以帮助开发者选择合适的存储方式。 亮点介绍: 1.数据库:提供结构化数据存储和能查询的效高力。 2.文件:简单易用,适合小规模数据存储和快速读写。 3.NoSQL:灵活的数据模型和可扩展性,适用于大规模数据存储和分布式系统。 背景介绍: 数据库是一种常见的数据存储方式,如MySQL、PostgreSQL等,它们提供了结构化数据存储和强大的查询能文件。力存储是一种简单的存储方式如,CSV、JSON等,适用于小规模数据存储和快速读写。NoSQL是一类非关系型数据库,如MongoDB、Redis等,它们具有灵活的数据模型和可扩展性。 示例代码: 下面是Python的pymysql库的实现参考

    03

    大数据数据分析架构探究

    从范式角度来讲,维度建模是以2NF的方式来描述数据,实体关系建模是以3NF的方式进行数据描述,由于分布式数据架构的兴起,使得维度建模得到了技术支持。换句话讲,现在数据增长的速度,对于现在的数据技术架构不再是技术瓶颈。对于数据的存储运用完全用2NF的方式表达,甚至1NF都有可能。当然现在有一种趋势就是2NF到3NF转变的过程,这方面与Data Vault的设计初衷是一致的,试图在2NF和3NF寻找一个合适的数据整合方案。 从信息传播的角度来讲,1NF的方式传播信息是最有效的,但是也是最冗余的,但对于信息存储是一个挑战。现阶段来讲2NF成为现在互联网企业主要的存储方式,因为数据增长速度,数据关系的复杂度,与数据的计算能力与数据的存储方式相匹配。但当数据的增长速度和数据关系的复杂度这两个变量发生指数级变化的时候,2NF的方式的存储似乎就不太适合,3NF的数据存储方式必然是选择,甚至于更高范式。但范式越高,信息的专业程度越大。解释一下范式越高,信息越专业,比如:我们平常的生活对话大部分都是2NF的,只有大人与刚刚学会说话的小孩会1NF的,因为我们要做大量的解释。当我们去工作的时候,一般你是具有3NF的知识才能,才能与工作的其他人进行沟通,那一篇博士论文呢,那所处的范式那就更高啦。 现阶段数据的存储还是人与机器或者人与人之间的信息记录,用3NF或者BCNF能够解决。试问下当机器与机器之间交流将来是什么样的呢,还是3NF的吗?是3NF还好,我们还可以存储与整合加以利用和分析,不是3NF的呢,个人觉得很可能不是,因为机器的设计工作超过3NF,更何况机器与机器交流信息呢。我们如何处理这些信息,然后加以有效利用和分析,值得去深究!

    02

    事务处理的数据存储

    在上篇文章我们讨论了数据模型,今天试着讨论更基础的数据存储和搜索。数据存储根据开发者使用,可以分为一般的事务处理和数据分析,因为这两者面临的情况不一样。事务处理聚焦于快速的存储和搜索少量的数据,但是数据分析需要读取大量的数据去进行聚合,而不怎么考虑读取花费的时间。后者一般称为数据仓库。 首先我们先看看传统数据库和大部分NoSQL的数据存储引擎。这个实际上分为两个流派,一个是基于日志结构,主要使用了LSM树,另一个是基于OS的页的结构,就是所谓的B树。这么说可能比较难懂。让我们想象一下,假设你有一个excel,里面存储了一条数据a,b,如果我们想查询a,我们可以遍历excel找到满足以a开头的数据a,b。这就是一个简单的数据库,存储数据时,只要简单的添加在下一列。查找时进行遍历,找到符合条件的。让我们想想这会有什么问题。对于数据存储,我们只需要简单的添加数据,对于磁盘这样极有效率,当然实际上的数据库还要考虑并行处理、磁盘存储空间不足等等情况。存储数据的file,就是所谓的log。另一方面,对于搜索数据,这个效率就相当慢了,因为每次搜索数据都需要遍历整个文件,时间复杂度是线性的增长,这时候我们就需要索引了。显然索引对于整个数据存储文件而言,是额外的存储结构,维护索引结构会牺牲write的效率。 对于索引结构,首先想到的是key-value结构。例如对于数据a,b c,f,d这种数据,我们可以用一个索引a,0 b,3这种hash map的形式0和3代表着文件的offset,我们查找数据的时候,先去hash map找到对应的key值,获得offset,我们就能获得key值对应的value。这听起来很简单,然而这就是Bitcask的实现方式。这个索引结构是完全存储在内存当中,如果超出内存的话,就会放在磁盘上。如果数据一直在增长,磁盘空间肯定会有不足的那一刻,解决办法就是将数据拆分为固定大小的segment,以及在合适的时候,合并segment,根据时间戳,保留最新的value值,重新写入新的segment,对旧的进行删除。对于实际的工程,我们还需要考虑 1.文件存储的格式,一般而言应该是以bytes存储 2.删除数据时,应该加上一个标签,比如tombstone,在合并segment时,对数据进行删除 3.数据库崩溃重新恢复,Bitcask使用的是快照的方式在磁盘保存索引结构 4.并发的写入数据,这个需要检查点来处理数据写入时数据库崩溃 5.并发控制,因为文件的immutable,所以并发控制相当简单。 但是这个依然存在问题,让我们想想,那就是hash table必须存储在内存中,这个对于大数据时很不友好,即使你是存储在磁盘上。并且对于范围查找很不友好,因为你需要遍历所有key去查找一个范围内的一个key。 为了解决范围查找,人们又提出了在创建索引时,我们可以按照key值进行排序,这样的存储方式叫做SSTable。这样有下面的几个好处,合并segment变得更有效率了,因为你只需要读取开始的key和结束的key就可以了。在保存索引时,也不需要将所有的key存储在内存里,只需要保存每个segment的开始key和结束key。读取数据时,也不需要遍历所有的key值了。那么对于维护索引呢?我们在写入数据时,会先写入memtable(存储在内存的例如红黑树之类的数据结构)。当memtable超过某个阈值时,会将memtable写入到磁盘的segment中。在读取数据时,我们会首先在memtable中查找数据,然后再根据时间逐步读取segment。每隔一段时间,后台进程便会合并segment,清理垃圾数据。这样处理的唯一问题,就是memtable遇到服务器崩溃。我们可以牺牲一部分write的效率,生成一个独立的log去立马保存写入的数据,这个log的唯一用途就是防止memtable的丢失。 上面的就是现在HBase、LevelDB、Lucene这些使用的LSM树结构。对于其的优化,目前可以使用布隆过滤器、size-tiered等方式去优化读取和合并segment。除了LSM树,目前还有一个广泛使用的索引,那就是B树。 B树主要是利用了操作系统的页结构,将数据拆分成一个固定尺寸的block块,使用存储address和location,类似于指针的方式存储数据。具体细节不多说,网上的文章一大堆。我们需要考虑的是负载因子和二叉树的平衡。对于每次的写入和修改数据,我们都需要找到key值在系统里对应的address去修改数据,重新写入,同样为了防止数据崩溃,一般的数据库会使用预写日志(WAL)去保存每一次数据的修改和写入。 除了这些索引,还有所谓的二级索引。这个类似于倒排索引。不仅如此,还有基于列的存储方式,这个大多是为了数据仓库服务的。

    03
    领券