Pandas 是我们经常使用的一种工具,用于处理数据,还有 seaborn 和 matplotlib用于数据可视化。...让我们从将它与 pandas 一起导入开始。...在 Pandas 中,我们可以使用以下命令: titanic[titanic['age'] >= 20] PandasGUI 为我们提供了过滤器,可以在其中编写查询表达式来过滤数据。...上述查询表达式将是: Pandas GUI 中的统计信息 汇总统计数据为您提供了数据分布的概览。在pandas中,我们使用describe()方法来获取数据的统计信息。...PandasGUI 中的数据可视化 数据可视化通常不是 Pandas 的用途,我们使用 matplotlib、seaborn、plotly 等库。
1.首先需要安装pandas, 安装的时候可能由依赖的包需要安装,根据运行时候的提示,缺少哪个库,就pip 安装哪个库。...2.示例代码 import pandas as pd from pandas import ExcelWriter EX_PATH = "E:\\code\\test2.xlsx" #读取excel..."Sheet1",index=True,header=True,index_label='hh') # index 为True的时候,会在表格中第一列增加一列行索引 # 如果新增加列的长度跟已有数据的列长度不一致的话
目录 1、标准数据帧 2、扩展数据帧 3、标准数据帧和扩展数据帧的特性 ---- CAN协议可以接收和发送11位标准数据帧和29位扩展数据帧,CAN标准数据帧和扩展数据帧只是帧ID长度不同,以便可以扩展更多...字节1为帧信息,第7位(FF)表示帧格式,在标准帧中FF=0,第6位(RTR)表示帧的类型,RTR=0表示为数据帧,RTR=1表示为远程帧。DLC表示在数据帧时实际的数据长度。...字节4~11为数据帧的实际数据,远程帧时无效。 2、扩展数据帧 CAN扩展帧帧信息是13字节,包括帧描述符和帧数据两部分,如下表所示: 前5字节为帧描述部分。...字节6~13为数据帧的实际数据,远程帧时无效。...3、标准数据帧和扩展数据帧的特性 CAN标准数据帧和扩展数据帧只是帧ID长度不同,功能上都是相同的,它们有一个共同的特性:帧ID数值越小,优先级越高。
(先来一波操作,再放概念) 远程帧和数据帧非常相似,不同之处在于: (1)RTR位,数据帧为0,远程帧为1; (2)远程帧由6个场组成:帧起始,仲裁场,控制场,CRC场,应答场,帧结束,比数据帧少了数据场...(3)远程帧发送特定的CAN ID,然后对应的ID的CAN节点收到远程帧之后,自动返回一个数据帧。...,因为远程帧比数据帧少了数据场; 正常模式下:通过CANTest软件手动发送一组数据,STM32端通过J-Link RTT调试软件也可以打印出CAN接收到的数据; 附上正常模式下,发送数据帧的显示效果...A可以用B节点的ID,发送一个Remote frame(远程帧),B收到A ID 的 Remote Frame 之后就发送数据给A!发送的数据就是数据帧!...发送的数据就是数据帧! 主要用来请求某个指定节点发送数据,而且避免总线冲突。
在了解数据帧之前,我们得先知道OSI参考模型 咱们从下往上数,数据帧在第二层数据链路层处理。我们知道,用户发送的数据从应用层开始,从上往下逐层封装,到达数据链路层就被封装成数据帧。...其中的Org Code字段设置为0,Type字段即封装上层网络协议,同Ethernet_II帧。 数据帧在网络中传输主要依据其帧头的目的mac地址。...当数据帧封装完成后从本机物理端口发出,同一冲突域中的所有PC机都会收到该帧,PC机在接受到帧后会对该帧做处理,查看目的MAC字段,如果不是自己的地址则对该帧做丢弃处理。...如果目的MAC地址与自己相匹配,则先对FCS进行校验,如果校验结果不正确则丢弃该帧。校验通过后会产看帧中的type字段,根据type字段值将数据传给上层对应的协议处理,并剥离帧头和帧尾(FCS)。...一般主机发送数据帧有三种方式:单播、组播、广播。三种发送方式的帧的D.MAC字段有些区别。
Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...ignore_index 参数用于在追加行后重置数据帧的索引。concat 方法的第一个参数是要与列名连接的数据帧列表。 ignore_index 参数用于在追加行后重置数据帧的索引。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...然后,我们在数据帧后附加了 2 列 [“罢工率”、“平均值”]。 “罢工率”列的列值作为系列传递。“平均值”列的列值作为列表传递。列表的索引是列表的默认索引。
本文框架 0.导入Pandas 1.读取csv文件 1.1 查看读取前的csv数据 1.2 读取数据 1.3 初步数据探索 2....读取txt文件 2.1 查看读取前的txt数据 2.2 读取数据 3. 读取excel文件 0.导入Pandas 我们在使用Pandas时,需要先将其导入,这里我们给它取了一个别名pd。...import pandas as pd 1.读取csv文件 1.1 查看读取前的csv数据 文件数据以逗号分隔。...使用pd.read_csv读取数据,使用默认的标题行、逗号分隔符。...读取txt文件 2.1 查看读取前的txt数据 文件数据以tab分隔,且无列名。
导入Pandas 1. 数据读取与预处理 2. 使用单个label值筛选数据 3. 使用列表名批量筛选 4. 使用区间进行范围筛选 5....导入Pandas import pandas as pd 1. 数据读取与预处理 # 数据读取 data = pd.read_csv("....astype("int32") -------------------------------------------------------------------------------- # 查看转化后数据框...使用单个label值筛选数据 loc[]接受两个参数,并以","分隔;逗号前表示行,逗号后表示列。...使用列表名批量筛选 使用列表名筛选行和列中的多个ID时,需要用中括号将ID括起来; 如果筛选行或列的单个ID,则不需要使用中括号。
前言 ❝本次我们来介绍,如何使用pandas进行数据的排序,包括Series排序以及DataFrame排序。 ❞ 0. 导入Pandas import pandas as pd 1....数据读取 # 数据读取 data = pd.read_csv("D:/Pandas/mtcars.csv") # 设置pandas的参数(最大列数,行宽,最大列宽)来展示完整信息 pd.set_option...display.max_columns', 1000) pd.set_option('display.width', 1000) pd.set_option('display.max_colwidth', 1000) # 查看数据
语法 语法如下: pd.compare(other, align_axis=1, keep_shape=False, keep_equal=False) 其中: other:被对比的数据 align_axis...a 1.0 1.0 1 a 2.0 2.0 2 b 3.0 3.0 3 b NaN 4.0 4 a 5.0 5.0 ''' 修改数据...b 3.0 3.0 3.0 4.0 3 b b NaN NaN 4.0 4.0 4 a a 5.0 5.0 5.0 5.0 ''' 数据相同...此外,还可以使用df1.equals(df2)来对比两个数据是否一致,测试两个对象是否包含相同的元素。...different_data_type ''' 1 2 0 10.0 20.0 ''' df.equals(different_data_type) # False 提一嘴,现在新版本的pandas
1. pandas入门篇 pandas是数据分析领域的常用库,它被专门设计来处理表格和混杂数据,这样的设计让它在数据清洗和分析工作上更有优势。...1. pandas数据结构 pandas的数据结构主要为: Series和DataFrame 1.1 Series Series类似一维数组,它由一组数据和一组与之相关的数据标签组成。...pandas的isnull和notnull可用于检测缺失数据。...DataFrame中的数据是以一个或多 个二维块存放的(而不是列表、字典或别的一维数据结构)。 创建DataFrame 字典创建 最常用的方法时直接传入一个由等长列表或NumPy数组组成的字典。...注意:将列表或数组赋值给某个列时,其长度必须跟DataFrame的长度匹配;将Series赋值给一个列时,会精确匹配DataFrame的索引,空位将被用NaH替代。
标签:pandas,Python 有时候,我们可能想要截取一个数据框架来删除多余的数据,这可以通过调用truncate()方法来实现。...pandas truncate()语法 DataFrame.truncate(before=None, after=None,...before=2表示删除索引值在2之前的行,即0和1 after=6表示删除索引值在6之后的行,即7、8和9 截取pandas中带有时间序列数据的数据框架 由于truncate方法适用于索引,因此在时间序列数据上使用它非常方便...在下面的示例中,删除2022-04-25之后的所有数据行。...截取数据框架列 还可以通过设置参数axis=1来删除多余的列: 已排序的索引是必需的 使用truncate()时有一个警告,必须首先对数据框架索引进行排序。
指示是服务端接收的请求报文 MODBUS 响应是服务器发送的响应信息 MODBUS 证实是在客户端接收的响应信息 Modbus-TCP报文: 报文头MBAP MBAP为报文头,长度为7字节,组成如下: 帧结构...PDU PDU由功能码+数据组成。...数据(一个地址的数据为1位) 如:在从站0x01中,读取开始地址为0x0002的线圈数据,读0x0008位 00 01 00 00 00 06 01 01 00 02 00 08 回:数据长度为0x01...数据(长度:9+ceil(数量/8)) 如:从地址0x0000开始读0x0012个离散量输入 00 01 00 00 00 06 01 02 00 00 00 12 回:数据长度为0x03个字节,数据为...寄存器数据(长度:9+寄存器数量×2) 如:读起始地址为0x0002,数量为0x0005的寄存器数据 00 01 00 00 00 06 01 04 00 02 00 05 回:数据长度为0x0A,第一个寄存器的数据为
Python常见的数据解决无非是第一阶段和大家分享的数字、文本、列表、元组和字典。 为了更方便的进行数据处理,pandas又使用了更为方便的带索引的Series和DataFrame。...一、初识Series Series就是一维数组,从结构上特别像列表,默认的Series是从0到N进行编号的,这个特性和列表很像 ? ? ?...将其他任意的对象转化为Series的方法就是pd.Series(转化对象) Series与列表此时几乎一样,只不过打印列表的时候是横排显示,Series是竖排显示,并且显示出了索引。...二、Series与列表差异与相同 列表的特性: 1、包含任意对象的有序集合 (不同) 2、通过下标索引(位置偏移)访问元素(相同) 3、可变长度、可任意嵌套 (不同) 4、支持原位改变 (相同) 相同点一...Series为了能更快的处理数据,所以要求每个Series或者DataFrame(后面介绍)的某列必须都是相同数据类型的。
系统:Windows 11 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 这个系列讲讲Python的科学计算及可视化 pandas模块 今天讲讲如何讲一个列表转换为...df Part 1:场景说明 我们在工作中可能需要对一些列表或者字典数据进行运算 当然我们可以通过循环判断一波处理得到想要的结果,但着实复杂低效 遇到这种计算问题,自然想到pandas这个非常好用的库...那我们只需要将需要处理的列表字典转换为pandas的df,这样后续处理就非常的高效了 Part 2: 代码 import pandas as pd list_1 = [{"a": 1, "b":...print("\ndf内容:") print(df.head(5)) 图1 代码截图 图2 执行结果 Part 3:部分代码说明 df = pd.DataFrame(list_1),核心就是将该列表传给...pd.DataFrame 观察执行结果,规律: 列表中的每一个元素是一个字典 每个字典的键是一样的,转换后对应df的列名 生成的df行索引采用自然数 本文为原创作品,欢迎分享朋友圈
2 数据帧与遥控帧 在CAN协议中,数据帧和遥控帧有着诸多相同之处,所以,在这里,我们将数据帧和遥控帧放在一起来讲。...顾名思义,所谓数据帧,就是包含了我们要传输的数据的帧,其作用当然也就是承载发送节点要传递给接收节点的数据。 而遥控帧的作用可以描述为:请求其它节点发出与本遥控帧具有相同ID号的数据帧。...数据帧 的帧结构如下图所示,包含七个段:帧起始、仲裁段、控制段、数据段、CRC段、ACK段、帧结束。...数据帧和遥控帧都分为标准帧(CAN2.0A)和扩展帧(CAN2.0B)两种结构。 遥控帧相比于数据帧除了缺少数据段之外,遥控帧的RTR位恒为隐性1,数据帧的RTR位恒为显性0。...对于没有数据段的遥控帧,DLC表示该遥控帧对应的数据帧的数据段的字节数。 2.4 数据段 数据段可以包含0~8个字节的数据,从MSB(最高位)开始输出。
Pandas的数据结构 import pandas as pd Pandas有两个最主要也是最重要的数据结构: Series 和 DataFrame Series Series是一种类似于一维数组的...对象,由一组数据(各种NumPy数据类型)以及一组与之对应的索引(数据标签)组成。...10 1 11 2 12 3 13 4 14 5 15 6 16 7 17 8 18 9 19 dtype: int64 pandas.core.series.Series...类似多维数组/表格数据 (如,excel, R中的data.frame) 每列数据可以是不同的类型 索引包括列索引和行索引 [图片上传失败......['A'])) print(df_obj2.A) 运行结果: 0 1.0 1 1.0 2 1.0 3 1.0 Name: A, dtype: float64 pandas.core.series.Series
例如报文数据 @x5B ="5"+"B"= X35 + X42 ....数据帧格式如下: 从ASCI报文帧可以看出,ASCI模式增加了起始(“:"和结束标志(回车&换行),由于报文数据每字节在ASCI模式下需要2字符进行编码,为了保证ASCI模式和RTU模式在应用级兼容,ASCI...模式数据块最大长度为252x2,所以可以计算出报文帧最大长度为1+2+2+2x252+2+2=513字符,报文顿内的字符间隔时间可以达1秒钟。...地址为0x0405,数据为0x1234,LRC校验值为0XAA。实际进行校验的数据不包含头和帧尾。 0xAA = LRC(01,06, 04,05,12,34)。...手动LRC计算方法 把原始数据两个字符组成一个字节,并进行二进制加法计算:01+06+04+05+12+34=0x56,计算二进制补码: 0x56 = 0101 0110取反: 1010 1001加1:
标签:Python与Excel,pandas 重命名pandas数据框架列有很多原因。例如,可能希望列名更具描述性,或者可能希望缩短名称。本文将介绍如何更改数据框架中的名称。...准备用于演示的数据框架 pandas库提供了一种从网页读取数据的便捷方式,因此我们将从百度百科——世界500强公司名单——加载一个表格。 图1 看起来总共有6列。下面单独列出了这个表的列。...我们可以使用这种方法重命名索引(行)或列,我们需要告诉pandas我们正在更改什么(即列或行),这样就不会产生混淆。还需要在更改前后告诉pandas列名,这提高了可读性。...df.set_axis(['排名', '公司名称', '营业收入(百万美元)', '利润(百万美元)', '国家'], axis = 1) 图7 df.columns方法 df.columns返回给定数据框架的列名列表...图8 通过将上述列名重新赋值给一个新的类似列表的对象,我们可以轻松更改这些列名: 图9 注意,此方法与set_axis()方法类似,因为我们需要为要保留的每一列传入名称。 何时使用何方法?
介绍 Modbus-RTU数据帧,帧长度最大为256字节,由以下4部分构成: 子节点地址: 1字节,范围0-247 功能代码: 1字节 数据块: 0-252字节 CRC校验值: 2字节,低8位在前 帧描述...Modbus-RTU帧间隔,Modbus-RTU要求两个RTU报文帧间隔要大于3.5个字节时间: 且每个报文帧内字节间隔小于1.5个字节时间,否则会认为接收不完整。...可以看出,当写1个寄存器数据时,从机响应的数据帧和主机发送的数据帧完成一致。 示例2: 写多个寄存器。...可以看出,写多个寄存器时使用10功能码,从机回复数据也比较精简。 示例3: 读单个寄存器。...表示读1个寄存器 02表示2个字节,56 78表示寄存器的数据 示例4: 读多个寄存器。
领取专属 10元无门槛券
手把手带您无忧上云