学习
实践
活动
工具
TVP
写文章

数据清洗

数据清洗 一般义的清洗 特殊字符 在数据清洗中最常见的就是特殊字符,一般的特殊字符可以直接替换掉如地址码中最常见的’#’,像这种直接替换为号即可。 所以,通过使用技术手段,可以解决掉大多数的问题,但不容忽视的是,技术可能没办法解决所有问题(也可能,某些技术牛人确实可以做到解决所有问题)。 错/别字处理 错别字问题在数据清洗中是难度比较大的一部分工作,在这部分工作中,首先要找出错别字,并建立错别字对应的正确字符串的对应关系,然后使用程序批量的完成替换 空值检测 空值是要在数据清洗中过滤掉的 清洗中常用的工具与技术 如果要做地理数据的相关处理,那么FME是应该首选工具,当然,清洗也属于数据处理的范畴。 但是前面提到的一些清洗,用FME实现的话会比较困难,比如:全角半角的问题的处理,又或者,简体转繁体,又或者汉语转拼音。所以除了FME还需要一些其他的技术,比如说:Python。

80820

数据清洗 Chapter01 | 数据清洗概况

这篇文章讲述的是数据存储方式和数据类型等基本概念、数据清洗的必要性和质量评价的关键点。希望这篇数据清洗的文章对您有所帮助! 二、数据清洗 1、什么是数据清洗数据 ? 数据清洗在大数据分析流程中的位置 ? 2、为什么要进行数据清洗 从不同渠道获得的数据,集成在一起,组成新的数据集,需要进行数据清洗,来保证数据集的质量 数据分析算法对输入的数据集有要求 显示情况下的数据集质量不禁如人意,需要数据清洗 3、数据存在的问题 四、数据清洗的主要内容 ?

46431
  • 广告
    关闭

    年末·限时回馈

    热卖云产品年终特惠,2核2G轻量应用服务器6.58元/月起,更多上云必备产品助力您轻松上云

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python数据清洗

    数据的质量直接关乎最后数据分析出来的结果,如果数据有错误,在计算和统计后,结果也会有误。 所以在进行数据分析前,我们必须对数据进行清洗。 需要考虑数据是否需要修改、如何修改调整才能适用于之后的计算和分析等。 数据清洗也是一个迭代的过程,实际项目中可能需要不止一次地执行这些清洗操作。 如果数据不存在或不符合数值规则 用nan填充 delimiter 以什么符号进行分割 skiprows=12 跳过开头12行 数据是从第13行开始的 usecols 就是获取下标为6,7列 的内容 =',', usecols=(6,7), unpack=True) # 读取后的数据类型:numpy.ndarray 缺省数据处理 01 直接填充 适合格式 DataFrame, numpy.ndarray ,没有头标签的要加上header, header=None 否则数据显示有问题 数据被会names(列标签)占用,可以先读取,获取 行和列,如果没有头标签,再设置names标签 其他参数: 文件读取部分数据

    51020

    7步搞定数据清洗-Python数据清洗指南

    数据清洗是整个数据分析过程的第一步,就像做一道菜之前需要先择菜洗菜一样。数据分析师经常需要花费大量的时间来清洗数据或者转换格式,这个工作甚至会占整个数据分析流程的80%左右的时间。 在这篇文章中,我尝试简单地归纳一下用Python来做数据清洗的7步过程,供大家参考。 尝试去理解这份数据集 我们可以通过对数据集提问来判断这份数据能不能满足解答我们的问题,数据是否干净需不需要进一步处理,问题包括但不限于: 数据集多少数据? 包含了什么字段?字段格式是什么? # 可以让你更好地了解哪些列缺失的数据更多,从而确定怎么进行下一步的数据清洗和分析操作。 DataDF.isnull().sum().sort_values(ascending=False) ? 可能会存在有标点符号掺杂/大小写不一致/空格重复出现等问题 6)消灭空值:CustomerID、Description、Country和UnitPrice都出现了NaN值,需要去掉 于是下面就开始后续的数据清洗

    1.1K20

    pandas数据清洗详细教程_excel数据清洗工具

    Pandas 数据清洗常见方法 01 读取数据 df=pd.read_csv('文件名称') 02 查看数据特征 df.info() 03 查看数据量 df.shape 04 查看各数字类型的统计量 df.describe ('店名')['销售额'].sum().sort_values 12 遍历查看数据集所有列的数据类型 cols=df_tm.columns for col in cols: print(col+':' +str(df_tm[col].dtype)) 13 转换数据类型 df['列名']=df.列名.astype('int') 01 去掉温度列后的℃,并将数据转为int类型 df.loc[:,'bwendu ']=df['bwendu'].str.replace('℃','').astype('int32') 02 对某列数据转换类型 data['列名']=data['列名'].astype(int) 14 删除指定列中有空值的行 mydf.dropna(subset=['列名'],inplace=True) mysf=mydf.dropna(subset=['列名']) 15 过滤某列中不符合类型的数据

    11210

    数据清洗经验

    平时习惯了在某些特定的数据集合上做实验,简单的tokenization、预处理等步骤就足够了。但是在数据越来越大的年代,数据清洗越来越重要,也越来越复杂。 数据给你了,那就要处理,但这些数据可能经常是: 不完整的(某些记录的某些字段缺失) 前后不一致(字段名和结构前后不一) 数据损坏(有些记录可能会因为种种原因被破坏) 因此,你必须经常维护你的清洗程序来清洗这些原始数据 在一部分数据上进行测试 不要尝试一次性清洗所有数据。当你刚开始写清洗代码和debug的时候,在一个规模较小的子集上进行测试,然后扩大测试的这个子集再测试。 这样做能够让原始数据作为一个字段保存在清洗后的数据当中,在清洗完之后,如果你发现哪条记录不对劲了,就能够直接看到原始数据长什么样子,方便你debug。 不过,这样做的坏处就是需要消耗双倍的存储空间,并且让某些清洗操作变得更慢。所以这一条只适用于效率允许的情况下。 验证清洗后的数据 记得写一个验证程序来验证你清洗后得到的干净数据是否跟你预期的格式一致。

    74140

    数据整合与数据清洗

    每次爬虫获取的数据都是需要处理下的。 所以这一次简单讲一下Pandas的用法,以便以后能更好的使用。 数据整合是对数据进行行列选择、创建、删除等操作。 数据清洗则是将整合好的数据去除其中的错误和异常。 本期利用之前获取的网易云音乐用户数据,来操作一番。 / 01 / 数据整合 首先读取数据。 使用数据框的方法drop。 04 纵向连接 数据的纵向合并指的是将两张或多张表纵向拼接起来,使得原先两张或多张表的数据整合到一张表上。 / 02 / 数据清洗 01 重复值处理 Pandas提供了查看和删除重复数据的方法,具体如下。

    88730

    Python数据清洗实践

    本文为 AI 研习社编译的技术博客,原标题 : DATA CLEANING WITH PYTHON 作者 | Balogun Omobolaji 翻译 | 酱番梨、祝弟弟基督教 “数据科学家们80%的精力消耗在查找、数据清理、数据组织上,只剩于20%时间用于数据分析等。”——IBM数据分析 数据清洗是处理任何数据前的必备环节。 在你开始工作前,你应该有能力处理数据缺失、数据不一致或异常值等数据混乱情况。在开始做数据清洗前,需要对Numpy和Pandas库有基本的理解。 数据清洗 数据清洗名如其意,其过程为标识并修正数据集中不准确的记录,识别数据中不可靠或干扰部分,然后重建或移除这些数据数据清洗数据科学中很少提及的一点,因为它没有训练神经网络或图像识别那么重要,但是数据清洗却扮演着非常重要的角色。没有它,机器学习预测模型将不及我们预期那样有效和精准。

    92420

    爬虫系列:数据清洗

    在高级数据采集部分就是要帮你分析原始数据,获取隐藏在数据背后的故事——网站的真实故事其实都隐藏在 Javascript、登录表单和网站反爬措施背后。 数据清洗 到目前为止,我们都没有处理过那些样式不规范的数据,要么使用的是样式规范的数据源,要么就是放弃样式不符合我们预期的数据。但在网络数据采集中,你通常无法对采集的数据样式太挑剔。 下面我们就通过工具和技术,通过改变代码的编写方式,帮你从源头控制数据凌乱的问题,并且对已经入库的数据经行清洗。 编写代码清洗数据 和编写异常处理代码一样,你应该学会编写预防型代码来处理意外情况。 我们可以定制一些规则让数据变得更规范: 剔除单字符的“单词”,除非这个单词是“a”或“i”; 剔除维基百科的引用标记(方括号包裹的数字,入1) 剔除标点符号 现在“清洗任务”列表变得越来越长,让我们把规则都移出来 本期关于数据清洗就是如上内容,在接下来的内容中我会讲解数据标准化,以及存储的数据如何清洗

    11510

    技术分享】机器学习之数据清洗与特征提取

    ---- 导语:本文详细的解释了机器学习中,经常会用到数据清洗与特征提取的方法PCA,从理论、数据、代码三个层次予以分析。  机器学习,这个名词大家都耳熟能详。 机器学习这门技术是多种技术的结合。而在这个结合体中,如何进行数据分析处理是个人认为最核心的内容。通常在机器学习中,我们指的数据分析是,从一大堆数据中,筛选出一些有意义的数据,推断出一个潜在的可能结论。 3、分类器处理:根据模型把数据分类,并进行数据结论的预测。 本文讲的主要是数据的预处理(降维),而这里采用的方式是PCA。 简单点说:假设有x1、x2、x3…xn维数据,我们想把数据降到m维,我们可以根据这n维的历史数据,算出一个与x1…xn相关m维数据,使得这个m维数据对历史数据的关联比达到最大。 26.jpg 27.jpg 总结一下: 我们在做机器学习的数据分析的时候,由于数据集的维度可能很高,这时候我们需要对数据进行降维。

    85043

    技能 | 利用SAS进行数据清洗技术——缺失值查询

    数据清洗技术是统计分析之前必做的一步,而且也是非常麻烦的一步,有时甚至花费的时间比统计分析都长。所以没有一定的技巧,这将是个非常烦人的工作。本篇文章介绍如何利用sas进行缺失值的查询工作。 假定我们有数据集aa,包含如下变量(数据省略): ID dose gender age t0 t1 a1 a2 最简单的方式当然就是挨个变量找缺失值,如下: data missing; set aa; ; array b_character_; do i=1 to dim(b); if missing(b) then output; end; 毫不夸张地说,这个简直就是个缺失值的通用语句,同时遍历了数据集中的数值型和文本型的所有缺失值

    1.7K100

    数据清洗数据筛选

    数据常用筛选方法 在数据中,选择需要的行或者列 基础索引方式,就是直接引用 ioc行索引名称或者条件,列索引名称或者标签 iloc行索引位置,列索引位置 import pandas as pd import os import numpy as np os.getcwd() 'D:\\Jupyter\\notebook\\Python数据清洗实战\\数据清洗数据表处理' os.chdir('D:\\Jupyter \\notebook\\Python数据清洗实战\\数据') df = pd.read_csv('baby_trade_history.csv', encoding='utf-8', dtype={'user_id 1 20121101

    df.columns # 查看数据字段 Index([

    15687

    数据清洗数据整理

    数据整理 定义 在数据清洗过程中,很多时候需要将不同的数据整理在一起,方便后续的分析,这个过程也叫数据合并 合并方法 常见的合并方法有堆叠和按主键进行合并,堆叠又分为横向堆叠和纵向堆叠,按主键合并类似于 import xlrd import os import pandas as pd import numpy as np os.getcwd() 'D:\\Jupyter\\notebook\\Python数据清洗实战 \\数据清洗数据表处理' os.chdir('D:\\Jupyter\\notebook\\Python数据清洗实战\\数据') workbook = xlrd.open_workbook('meal_order_detail.xlsx dtype={'user_id': str}) df1 = pd.read_csv('sam_tianchi_mum_baby.csv', dtype={'user_id': str}) # 基本信息数据 th>4 10642245 20130213 0

    # 交易数据

    165117

    Python数据清洗实践

    本文为 AI 研习社编译的技术博客,原标题 : DATA CLEANING WITH PYTHON 作者 | Balogun Omobolaji 翻译 | 酱番梨、祝弟弟基督教 “数据科学家们80%的精力消耗在查找、数据清理、数据组织上,只剩于20%时间用于数据分析等。”——IBM数据分析 数据清洗是处理任何数据前的必备环节。 在你开始工作前,你应该有能力处理数据缺失、数据不一致或异常值等数据混乱情况。在开始做数据清洗前,需要对Numpy和Pandas库有基本的理解。 数据清洗 数据清洗名如其意,其过程为标识并修正数据集中不准确的记录,识别数据中不可靠或干扰部分,然后重建或移除这些数据数据清洗数据科学中很少提及的一点,因为它没有训练神经网络或图像识别那么重要,但是数据清洗却扮演着非常重要的角色。没有它,机器学习预测模型将不及我们预期那样有效和精准。

    76030

    简单使用 :pandas 数据清洗

    读取数据 使用 pd 的 read_sql 读取数据 import pymysql import pandas as pd self.conn = pymysql.connect(host=host, product_name'], inplace=True) 异常值处理 处理异常值使用 pd 的 replace 方法 df.replace(' ', np.nan, inplace=True) 数据重新写入到 MySQL 数据重新写入 MySQL 使用 pd 的 to_sql 方法 df.to_sql(name=table_name, con=self.conn, if_exists='append', index create_engine engine = create_engine("mysql+pymysql://user:pass@host:port/db") 2、空值处理的问题 保存在 mysql 中的数据中有空值

    35820

    -Pandas 清洗“脏”数据(一)

    不管是不完善的报表,还是技术处理数据的失当都会不可避免的引起“脏”数据。 庆幸的是,Pandas 提供功能强大的类库,不管数据处于什么状态,他可以帮助我们通过清洗数据,排序数据,最后得到清晰明了的数据。 下面我们通过使用 Pandas 提供的功能来清洗“脏”数据。 准备工作 首先,第一次使用 Pandas 之前,我们需要安装 Pandas。 有很多方式可能造成数据集变“脏”或被破坏: 用户环境的不同、 所使用语言的差异 用户输入的差别 在这里,我介绍了 Python 用 Pandas 清洗数据最一般的方式。 更多关于数据清洗的内容可以关注知乎上的专栏“数据清洗” 知乎数据清洗- Pandas 清洗“脏”数据(一)

    1.9K70

    python中数据清洗_dropon

    实际应用中,在得到原始数据时,经常碰到数据缺失问题,对数据进行加工或清洗就非常有必要了 import numpy as np from numpy import nan import pandas as

    10120

    房价数据转换和清洗

    对新建的ipynb文件重命名2.png 3.导入数据并查看数据字段 ? 数据处理1.png 在数据处理过程中,需要多次查看DataFrame的字段,所以定义一个函数。 数据处理4.png 从上图看出DataFrame的行数从26332行变为了25887行。 所以前面的篇幅可以用作思路的参考,最终数据处理只需要复制下面一段代码就可以完成。 数据处理结果图示.png

    35220

    2.4 数据清洗12招

    数据清洗12招 把源数据汇总后,为了满足质量要求的数据,需要做数据清洗。PQ就好像变形金刚(英文版PowerBI的转换选项卡恰好也叫“Transform”),在转换选项卡中,集成了各类变形功能。 1 首行作标题 我们把数据获取到查询器中往往首行的标题是未识别的状态,只需单击将第一行作为标题。 ? 2 修改数据类型 我们使用PowerBI时数据类型的不匹配是常常犯的错误,如果你发现数据输出的结果有问题,第一时间先想想是不是因为数据的类型定义有问题。 10 排序 这个排序与Excel是一样的,在筛选下拉箭头下可以对数据排序。(不要小看排序功能,在复杂数据分析时,排序配合索引列在行数据处理时会有奇效,在这里做个预先提示。) ? 曾经要花很久时间才能解决的数据清洗问题,现在学习几个小招就来轻松秒杀,要相信科学技术是第一生产力,感谢科技带来的变革。 感谢您关注公众号PowerBI大师

    65130

    扫码关注腾讯云开发者

    领取腾讯云代金券