首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

湖仓一体

做一名主要从事OLAP内核研发,对现有湖仓理解做个总结;欢迎批评/指正/讨论 1 为什么湖仓一体这么热: 湖、仓定义这里就不赘述了,大家可以去搜 我理解就是各类数据爆发的公司当前数据平台架构遇到了各类各样的问题...,寻求一个适配公司、平台的数据架构,一站式解决,但是大家对湖、仓本质的理解可能都不太一样,那又怎么谈湖仓一体呢。...我也一样,理解一定是片面的,我吸收的内容和我个人脑海呈现的画面也是不一样的,只能尽自己所能,表达清楚对湖仓一体的理解,和面对什么样的业务背景下,我们应该如何围绕我们的平台去做自己的湖仓一体。...Iceberg(Iceberg+hdfs/s3)就是湖,大家也可以去搜索下数据湖的定义 离在线一体,很多是表现为产品本身的一体化: 比如 元数据一体化,比如各类自家商业化引擎+一堆External/Multi...view,进行冷热数据的聚合;达到数据的一个统一视图,即仓上挂湖,冷热分层; 4 从真正意识上的湖仓一体,那就是云原生了: One Data:同时支持离线处理和在线分离,解决数据的一致性和实效性;即数据可以不开源

15321

数据湖与湖仓一体架构实践

五、汽车之家湖仓一体架构实践案例分享 以下文字来源DataFunTalk,介绍了如何基于Apache Iceberg构建湖仓一体架构,将数据可见性提升至分钟级;从多维分析的角度来探讨引入Apache Iceberg...02 基于 Iceberg 的湖仓一体架构实践 湖仓一体的意义就是说我不需要看见湖和仓,数据有着打通的元数据的格式,它可以自由的流动,也可以对接上层多样化的计算生态。 ——贾扬清 1....流批一体: 在流批一体的理念下,Flink 的优势会逐渐体现出来。 12....总结 通过对湖仓一体、流批融合的探索,我们分别做了总结。 湖仓一体 Iceberg 支持 Hive Metastore; 总体使用上与 Hive 表类似:相同数据格式、相同的计算引擎。...架构收益 - 准实时数仓 上方也提到了,我们支持准实时的入仓和分析,相当于是为后续的准实时数仓建设提供了基础的架构验证。准实时数仓的优势是一次开发、口径统一、统一存储,是真正的批流一体。

2.5K32
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据湖仓一体的好处

    其次,您可以订阅数据湖仓服务,例如软件即服务 (SaaS)。 本文将深入探讨这两种类型的数据湖仓部署的特征,介绍 Cloudera 新的一体化湖仓产品 CDP One 的优势。...PaaS 数据湖仓 平台即服务 (PaaS) 数据湖仓是在您的云帐户中配置的数据湖仓的虚拟化部署。Cloudera 数据平台 (CDP) 公共云是 PaaS 数据湖仓的一个示例。...SaaS 数据湖仓 软件即服务 (SaaS) 数据湖仓部署是作为服务提供的交钥匙解决方案。例如,最近发布的 CDP One数据湖仓一体化是一种在云中运行的 SaaS 产品(亚马逊网络服务)。...数据湖仓一体的好处 运营可用于生产的数据湖仓可能具有挑战性。挑战包括部署和维护数据平台以及管理云计算成本。...CDP One 是一种一体化数据湖仓软件即服务 (SaaS) 产品,可对任何类型的数据进行快速简便的自助分析和探索性数据科学。

    73420

    湖仓一体详解

    问题导读 1.什么是数据仓库、数据集市和数据湖? 2.湖仓一体化为什么诞生? 3.湖仓一体化是什么? 4.湖仓一体化的好处是什么?...由于这些原因,数据湖的许多功能尚未实现,并且在很多时候丧失了数据湖的优势。 2.湖仓一体化为什么诞生?...是否能有一种方案同时兼顾数据湖的灵活性和云数据仓库的成长性,将二者有效结合起来为用户实现更低的总体拥有成本?那么湖仓一体化就是答案! 3.湖仓一体化是什么?...湖仓一体是一种新型开放式架构,将数据湖和数据仓库的优势充分结合,它构建在数据湖低成本的数据存储架构之上,又继承了数据仓库的数据处理和管理功能,打通数据湖和数据仓库两套体系,让数据和计算在湖和仓之间自由流动...4.湖仓一体化的好处是什么? 湖仓一体能发挥出数据湖的灵活性与生态丰富性,以及数据仓库的成长性与企业级能力。

    4.1K21

    数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)

    导读: 湖仓一体是将数据湖和数据仓库的优势相结合的数据管理系统。Apache Doris 结合自身特性,提出了【数据无界】和【湖仓无界】核心理念。...上篇文章已介绍了 Apache Doris 湖仓一体完整方案,本文将聚焦典型应用场景,进一步深入,帮助读者更好地理解和应用 Apache Doris 湖仓一体。...在数据驱动决策的时代,湖仓一体架构以统一存储、统一计算、统一管理的创新形式,补齐了传统数据仓库和数据湖的短板,逐步成为企业大数据解决方案新的标准。...在上一篇文章中,全面介绍了湖仓一体演进历程以及 Apache Doris 湖仓一体解决方案,具体查阅:(上篇)从 0 到 1 构建湖仓体系, Apache Doris 湖仓一体解决方案全面解读。...本文将进一步深入,聚焦于 湖仓分析加速、多源联邦分析、湖仓数据处理 这三个典型场景,分享 Apache Doris 湖仓一体方案的最佳实践。

    10110

    数据湖VS数据仓库?湖仓一体了解一下

    /EMR DataLake的湖仓一体方案做一介绍。...六、阿里云湖仓一体方案 1. 整体架构 阿里云MaxCompute在原有的数据仓库架构上,融合了开源数据湖和云上数据湖,最终实现了湖仓一体化的整体架构(图11)。...MaxCompute实现湖仓一体化的存储访问层,不仅支持内置优化的存储系统,也无缝的支持外部存储系统。既支持HDFS数据湖,也支持OSS云存储数据湖,可读写各种开源文件格式。...4)自动数仓 湖仓一体需要用户根据自身资产使用情况将数据在湖和仓之间进行合理的分层和存储,以最大化湖和仓的优势。...构建湖仓一体化的数据中台 基于MaxCompute湖仓一体技术,DataWorks可以进一步对湖仓两套系统进行封装,屏蔽湖和仓异构集群信息,构建一体化的大数据中台,实现一套数据、一套任务在湖和仓之上无缝调度和管理

    3K10

    湖仓一体:基于Iceberg的湖仓一体架构在B站的实践

    本文主要介绍为了应对以上挑战,我们在湖仓一体方向上的一些探索和实践。 Why?为什么需要湖仓一体 在讨论这个问题前,我们可能首先要明确两个概念:什么是数据湖?什么是数据仓库?...湖仓一体是近两年大数据一个非常热门的方向,如何在同一套技术架构上同时保持湖的灵活性和仓的高效性是其中的关键。...在开源社区领域,Iceberg、Hudi、DeltaLake等项目的出现也为在SQL on Hadoop的数据湖技术方案上实现湖仓一体提供了基础的技术储备。...在B站,基于我们之前的技术栈和实际的业务场景,我们选择了第二个方向,从数据湖架构向湖仓一体演进。...我们基于Iceberg构建了我们的湖仓一体架构,在具体介绍B站的湖仓一体架构之前,我觉得有必要先讨论清楚两个问题,为什么Iceberg可以构建湖仓一体架构,以及我们为什么选择Iceberg?

    84910

    数据仓库与数据湖与湖仓一体:概述及比较

    数据仓库和数据湖是大数据使用最广泛的存储架构。但是使用数据湖仓一体怎么样呢?提供数据仓库、数据湖以及现在的湖仓一体的不同供应商都提供了自己独特的优点和缺点,供数据团队考虑。...湖仓一体通常从包含所有数据类型的数据湖开始;然后,数据被转换为数据湖表格式(一种为数据湖带来可靠性的开源存储层)。...3.6 湖仓一体的好处 湖仓一体架构将数据仓库的数据结构和管理功能与数据湖的低成本存储和灵活性相结合。...易于数据版本控制、治理和安全性:数据湖仓一体架构强制实施架构和数据完整性,从而更容易实现强大的数据安全和治理机制。 3.7 湖仓一体的缺点 湖仓一体的主要缺点是它仍然是一项相对较新且不成熟的技术。...尽管数据湖仓一体结合了数据仓库和数据湖的所有优点,但我们不建议您为了数据湖仓一体而放弃现有的数据存储技术。 5. 哪一个存储模式最适合您的需求? 从头开始构建湖仓一体可能很复杂。

    3.1K10

    基于湖仓一体构建数据中台架构

    数据仓库存储结构化的数据,适用于快速的BI和决策支撑,而数据湖可以存储任何格式的数据,往往通过挖掘能够发挥出数据的更大作为,因此在一些场景上二者的并存可以给企业带来更多收益。...湖仓一体,又被称为Lake House,其出发点是通过数据仓库和数据湖的打通和融合,让数据流动起来,减少重复建设。...Lake House架构最重要的一点,是实现数据仓库和数据湖的数据/元数据无缝打通和自由流动。...湖里的“显性价值”数据可以流到仓里,甚至可以直接被数仓使用;而仓里的“隐性价值”数据,也可以流到湖里,低成本长久保存,供未来的数据挖掘使用。...湖仓一体技术借助海量、实时、多模的数据处理能力,实现全量数据价值的持续释放,正成为企业数字化转型过程中的备受关注焦点。

    94310

    别说你懂湖仓一体

    为此,这篇文章我们将主要分析: 1、数据仓、数据湖、湖仓一体究竟是什么? 2、架构演进,为什么说湖仓一体代表了未来? 3、现在是布局湖仓一体的好时机吗?...01:数据湖+数据仓≠湖仓一体 在湖仓一体出现之前,数据仓库和数据湖是被人们讨论最多的话题。 正式切入主题前,先跟大家科普一个概念,即大数据的工作流程是怎样的?...这里需要注意的是,“湖仓一体”并不等同于“数据湖”+“数据仓”,这是一个极大的误区,现在很多公司经常会同时搭建数仓、数据湖两种存储架构,一个大的数仓拖着多个小的数据湖,这并不意味着这家公司拥有了湖仓一体的能力...,湖仓一体绝不等同于数据湖和数据仓简单打通,反而数据在这两种存储中会有极大冗余度。...02:为什么说湖仓一体是未来? 回归开篇的核心问题:湖仓一体凭什么能代表未来? 关于这个问题,我们其实可以换一个问法,即在数据智能时代,湖仓一体会不会成为企业构建大数据栈的必选项?

    61130

    湖仓一体,技术“缝合怪”?

    因此,湖仓一体化应运而生,旨在将数据仓库的结构化分析能力与数据湖的存储灵活性无缝结合,为企业提供一个综合的数据管理方案。 接下来,我们就湖仓一体进行更深入的分析。...为什么要追求湖仓一体? 既然数据湖和数据仓库是两种截然不同的东西,那我们为什么现在要强行将他们融为一体呢?那是因为新的数据需求,逼着我们去实现湖仓一体。 让我们先来看一个例子。...现实的业务需求,逼着他们追求湖仓一体。 湖仓一体化策略的关键,在于它整合了数据仓库的高效、结构化查询处理能力,和数据湖的大规模、多样化数据存储能力。...随着技术的不断发展,我们预计湖仓一体化将在未来的企业数据战略中扮演越来越重要的角色。 具体怎么实现湖仓一体? 既然湖仓一体这么好,那么,应该怎么样来实现湖仓一体呢?...当然,湖仓一体的技术创新才刚刚开始,未来还有很长的路要走。 展望未来,湖仓一体化预计将在多个维度实现技术革新和进步。

    39010

    通用数据湖仓一体架构正当时

    通用数据湖仓一体架构 通用数据湖仓一体架构将数据湖仓一体置于数据基础架构的中心提供快速、开放且易于管理的商业智能、数据科学等事实来源。...数以千计同时使用数据湖和数据仓库的组织可以通过采用此架构获得以下好处: 统一数据 通用数据湖仓一体体系结构使用数据湖仓一体作为组织云帐户中的事实来源,并以开源格式存储数据。...例如沃尔玛在 Apache Hudi 上构建了他们的湖仓一体,确保他们可以通过以开源格式存储数据来轻松利用新技术。...我相信在未来的道路上通用数据湖仓一体架构也可以建立在为这些需求提供类似或更好的支持的未来技术之上。 最后 Onetable 是通用数据湖仓一体架构的另一个构建块。...借助通用数据湖仓一体架构,他们的分析师可以继续使用仓库对湖仓一体中存储的数据进行查询。

    27210

    大数据架构系列:如何理解湖仓一体

    估值或达380亿美元;各大伺机而动的云厂商也纷纷推出自己的数据湖、云数据仓库、湖仓一体产品。...以下讨论数据湖、数据仓库、湖仓一体都是基于用户的数据是海量且复杂多元的。...目前业内的湖仓一体的架构一般都叫基于某某数据仓库的湖仓一体架构,用户会把热数据(频繁查询)放在数据仓库中,无论在存储和计算上都有大量的优化,计算速度快、成本高;冷数据放在数据湖中,计算慢、成本低,当用户要查询时...链接2 深度对比 Delta、Iceberg 和 Hudi 三大开源数据湖方案。链接3 2万字详解数据湖:概念、特征、架构与案例。链接4 详解数据湖,概念、特征、架构、方案、场景以及建湖全过程。...链接5 4万字全面掌握数据库、数据仓库、数据集市、数据湖、数据中台。链接6 大数据发展20年,“仓湖一体”是终局?链接7 B站基于Iceberg的湖仓一体架构实践。链接8 亚马逊湖仓一体。

    2.3K102

    大数据架构系列:如何理解湖仓一体?

    以下讨论数据湖、数据仓库、湖仓一体都是基于用户的数据是海量且复杂多元的。...湖仓对比 (以上图片来自阿里云) Why:业界为什么要做湖仓一体? 我来形象地描述一下:集合两者的优势,像数据仓库一样管理的数据湖,像数据湖一样开放的数据仓库。...目前业内的湖仓一体的架构一般都叫基于某某数据仓库的湖仓一体架构,用户会把热数据(频繁查询)放在数据仓库中,无论在存储和计算上都有大量的优化,计算速度快、成本高;冷数据放在数据湖中,计算慢、成本低,当用户要查询时...参考资料: 1.多角度解析:数据湖VS数据仓库的根本区别 2.深度对比Delta、Iceberg和Hudi三大开源数据湖方案 3.2万字详解数据湖:概念、特征、架构与案例 4.详解数据湖,概念、特征、架构...7.B站基于Iceberg的湖仓一体架构实践 8.亚马逊湖仓一体 9.构建切实有效的湖仓一体架构  作者简介 叶强盛 腾讯云开发者社区【技思广益·腾讯技术人原创集】作者 腾讯后台开发工程师,目前负责腾讯天穹大数据

    4.4K20

    AWS的湖仓一体使用哪种数据湖格式进行衔接?

    现在您可以使用Amazon Redshift查询Amazon S3 数据湖中Apache Hudi/Delta Lake表数据。...Amazon Redshift Spectrum作为Amazon Redshift的特性可以允许您直接从Redshift集群中查询S3数据湖,而无需先将数据加载到其中,从而最大限度地缩短了洞察数据价值时间...有关更多信息,请参阅开源Apache Hudi文档中的Copy-On-Write表。 当创建引用Hudi CoW格式数据的外表后,将外表中的每一列映射到Hudi数据中的列。映射是按列完成的。...bucket/prefix/partition-path' Apache Hudi最早被AWS EMR官方集成,然后原生集成到AWS上不同云产品,如Athena、Redshift,可以看到Hudi作为数据湖格式层衔接了云原生数据湖与数据仓库...,可用于打造湖仓一体底层通用格式,Hudi生态也越来越完善,也欢迎广大开发者参与Apache Hudi社区,一起建设更好的数据湖,Github传送门:https://github.com/apache/

    1.9K52

    Streaming与Hudi、Hive湖仓一体!

    Hudi介绍 概述 架构图 核心概念 Timeline 文件布局 索引 表类型与查询 COW类型表详解 MOR类型表详解 流实时摄取 Frog造数程序 Structured Streaming 湖仓一体...哪些数据发生了变更。 架构图 传统的批处理(例如:T+1),需要更长时间,才能看到数据的更新。而Hudi将流处理引入到大数据中,在更短地时间内提供新的数据,比传统批处理效率高几个数量级。...hudiTableName}") .awaitTermination() } } 运行 启动HDFS集群 启动Hive MetaStore和HiveServer2 启动造数程序 湖仓一体...DataSourceOptions.scala 配置项请参考:http://hudi.apache.org/docs/configurations.html#read-options 推荐阅读 触宝科技基于Apache Hudi的流批一体架构实践...Apache Hudi在Hopsworks机器学习的应用 通过Z-Order技术加速Hudi大规模数据集分析方案 实时数据湖:Flink CDC流式写入Hudi Debezium-Flink-Hudi

    3.3K52

    7000字,详解仓湖一体架构!

    由于这些原因,数据湖的许多功能尚未实现,并且在很多时候丧失了数据湖的优势。 02 数据湖+数据仓=湖仓一体? 在湖仓一体出现之前,数据仓库和数据湖是被人们讨论最多的话题。...就湖仓一体发展轨迹来看,早期的湖仓一体,更多是一种处理思想,处理上将数据湖和数据仓库互相打通,现在的湖仓一体,虽然仍处于发展的初期阶段,但它已经不只是一个纯粹的技术概念,而是被赋予了更多与厂商产品层面相关的含义和价值...这里需要注意的是,“湖仓一体”并不等同于“数据湖”+“数据仓”,这是一个极大的误区,现在很多公司经常会同时搭建数仓、数据湖两种存储架构,一个大的数仓拖着多个小的数据湖,这并不意味着这家公司拥有了湖仓一体的能力...06 湖仓一体化有什么好处? 湖仓一体能发挥出数据湖的灵活性与生态丰富性,以及数据仓库的成长性与企业级能力。...现在是采用湖仓一体的好时机吗? Q:现在大多数企业都还没有用到湖仓一体的新架构,他们要么选择了数据湖方案,要么选择了数仓方案。湖仓一体作为一个新兴架构,很多企业目前还在早期探索阶段。

    4K30

    安全云数据湖仓一体的 10 个关键

    将这个生态系统迁移到云端对于那些规避风险的人来说可能会感到不知所措,但云数据湖仓一体安全多年来已经发展到可以更安全、正确完成并提供比本地部署显着优势和好处的地步数据湖仓一体部署。...数据湖仓一体角色应仅限于管理和管理数据湖仓一体平台,仅此而已。云安全功能应分配给经验丰富的安全管理员。数据湖仓一体用户不应该将环境暴露于重大风险中。...根据云数据湖仓一体中运行的服务数量,您可能需要将此方法扩展到其他开源或第三方项目(例如 Apache Ranger),以确保对所有服务进行细粒度授权。 加密 加密是集群和数据安全的基础。...结论:全面的数据湖仓一体安全至关重要 云数据湖仓一体是一个复杂的分析环境,超越了存储,需要专业知识、规划和纪律才能有效保护。...归根结底,企业对自己的数据负有责任和义务,应该考虑如何将云数据湖仓一体转变为运行在公有云上的“私有数据湖仓一体”。此处提供的指南旨在将云提供商基础架构的安全范围扩展到包括企业数据。

    75810

    如何优化开放数据湖仓一体的性能

    虽然采用湖仓一体架构提供了这些切实的好处,但重要的是要认识到这只是旅程的第一步。...随着越来越多的数据被摄取到存储中,无论是 Amazon S3、GCS 或 Azure Blob 等云对象存储,还是本地系统,都必须考虑湖仓一体中数据文件的最佳管理。...在查询期间需要扫描的数据越少,查询的速度就越快,成本效益就越高。 在下面的部分中,我们将详细介绍这些技术,并提供有关如何应用它们来优化数据湖仓一体中的存储并提高查询性能的见解。...同样,Bloom 筛选条件提供了另一种在湖仓一体中跳过数据的可靠方法。Bloom 过滤器是一种概率数据结构,可快速确定数据集中是否存在特定值。...清理 在数据湖仓一体系统中,清理是保持性能和管理存储成本的关键过程。随着数据的不断写入、更新和删除,较旧的文件版本和元数据往往会随着时间的推移而累积。

    10410

    万字详解数据仓库、数据湖、数据中台和湖仓一体

    本文目录: 一、前言 二、概念解析 数据仓库 数据湖 数据中台 三、具体区别 数据仓库 VS 数据湖 数据仓库 VS 数据中台 总结 四、湖仓一体 目前数据存储方案 Data Lakehouse(湖仓一体...四、湖仓一体 有人说“湖仓一体成为下一站灯塔,数仓、数据湖架构即将退出群聊”。...Data Lakehouse(湖仓一体) Data Lakehouse的出现试图去融合数仓和数据湖这两者之间的差异,通过将数仓构建在数据湖上,使得存储变得更为廉价和弹性,同时lakehouse能够有效地提升数据质量...解释拓展: 湖仓一体,简单理解就是把面向企业的数据仓库技术与数据湖存储技术相结合,为企业提供一个统一的、可共享的数据底座。...湖仓一体方案的出现,帮助企业构建起全新的、融合的数据平台。通过对机器学习和AI算法的支持,实现数据湖+数据仓库的闭环,提升业务的效率。

    1.7K20
    领券